
Method

ACONA: Active Online Model Adaptation for Predicting
Continuous Integration Build Failures

Motivation

Ansong Ni, Ming Li
National Key Laboratory for Novel Software Technology, Nanjing University, China

niansong1996@gmail.com, lim@nju.edu.cn

A typical workflow of CI

Observation1: Despite the great
benefit of CI, it consumes great
computation resources and causes
great latency in team collaboration.

Observation2: A majority of the builds
turned out to be clean, which provides
no information on potential defects.

Reducing the cost of CI

The challenges in CI outcome prediction Challenge2: The code changes are streaming data, which requires re-
training after every single change is staged.

Challenge1: The build data from a project is almost always not enough for training an effective classifier. Especially for newly
started projects, which suffer from a severe “cold start” problem.

Challenge3: Ture label for updating and training the classifier can only be
obtained by executing real CI builds. To reduce the total cost, the amount
of labels should be minimized.

Experiments

Solution3: We leverage active
learning to address this problem.
With active learning policy, ACONA
can minimize the demand for
labeled data by selecting the most
valuable build tasks to query the
real build outcome for update.

CI with predictive model

If predicted as SUCCESS, developers will directly
receive this predictive feedback thus their work is
not interrupted. We can either delay this build and
priotize more buggy ones, or simply mark it as clean
and skip it.

If predicted as FAILURE, a real CI build is requested
to generate a full report for locating potential
defects. The real CI result will also be fed to the
model as training labels.

Developers receive instant feedback,
improving the efficiency of the group.
Computation resources are saved due to
reduced amount of builds and more
reasonable dispatching policy.

Solution1: We utilize a pool of models built on other old projects and we try to select
some models for a new project. We do this by learning a combination weight, a
simple but very effective approach.

Solution2: We solve this with online learning of the combination weight.
With the project evolving, the combination weight is repeatedly while the
models in the pool stay unchanged.

An illustration of active
online learning

General framework of our method

For each old project, a random forest,
each with several random trees (C4.5
decision trees with random features)
are trained with its build history. Then
we ensemble all the random forests
trained on different projects using
bagging to form the model pool.

For each CI build, all RT in the
model pool is required to give its
prediction. Multiplied by the weight
vector, we get the prediction given
by the pool. If the label is queried
by the active policy, it is used to
update the weight vector.

ACtive ONline Adaptation (ACONA) Online Model Pool Adaptation:
In order to learn the optimal combination weight of the
model pool, we employ a soft margin SVM. Consider a

sequence of data 𝑥 1 , 𝑦 1 , 𝑥 1 , 𝑦 1 , … , of length 𝑇,

the objective is to minimize the average cost of each time
step as follows:

The update rule of the weight vector is as follows:

It is proved that if we set 𝜂𝑡 =
1

𝑡
, the online optimization will

converge to the optimal “offline” solution.

An example of online adaptation

Active Learning Policy:
In order to update the weight vector, the ground truth for the label is
required. To minimize the amount of labels that ACONA requires, we
leverage active learning in an online setting. In each time step, we
calculate the distance of the prediction vector to the decision hyperplane
as follows:

Then we adopt a threshold 𝜃 ∈ (0,1), the builds that lies within the
“active learning margin” will be fed to CI system and perform a real CI
build to query for true label.

An illustration of active learning

Experiment settings Impact of active learning

Average ACONA effectiveness

Model pool adaptation effectiveness

Performance of different selection heuristics with fixed query quota

Dataset: We synthesized the data from two
sources, TravisTorrent and GitHub. We select the
projects with over 1,000 LOC and 200 builds
which results in 534 projects with a total amount
of 365,766 builds.

Evaluation: We use the following two metrics:
• F-Measure: As the class of failed builds is

critical in CI outcome prediction, we focus on
the F-Measure of it.

• Accumulated Error: With an online setting, it is
a widely used metric for evaluation along the
time. It is the average error rate of all previous
predictions.

• Query Rate: Since querying real label from CI
system brings cost, query rate is used to
evaluate the percentage of labeled data a
model demands for learning.

Accumulated error with project progress

Conclusion:
1. ACONA utilizes a pool of well-trained models built on old projects, which

solves the “cold start” problem for newly started projects.
2. It only learns a combination weight of the model pool and with active

learning, it selects the most valuable builds to query the CI system for
update which greatly reduces its total cost.

3. ACONA boosts F-Measure by 40.0% and reduced Accumulated Error by
63.2%. After adaptation, it outperforms all previously used methods.

Possible Solution: Directly apply existing
models built on other old projects.

Result: (Poor Performance)

our method

Observation: A new project may share some characteristics with old projects thus
some of their models might be useful despite being poor on average.

Method

