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The cha||enge5 in Cl outcome prediction {ChallengeZ: The code changes are streaming data, which requires re-

training after every single change is staged.
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Challengel: The build data from a project is almost always not enough for training an effective classifier. Especially for newly Solution2: We solve this with online learning of the combination weight.
started projects, which suffer from a severe “cold start” problem. With the project evolving, the combination weight is repeatedly while the
models in the pool stay unchanged.

Possible Solution: Directly apply existing

Observation: A new project may share some characteristics with old projects thus

models built on other old projects. some of their models might be useful despite being poor on average. Challenge3: Ture label for updating and training the classifier can only be
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critical in Cl outcome prediction, we focus on
the F-Measure of it.

* Accumulated Error: With an online setting, it is
a widely used metric for evaluation along the
time. It is the average error rate of all previous
predictions.

* Query Rate: Since querying real label from CI
system brings cost, query rate is used to
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Experiments
Experiment settings Model pool adaptation effectiveness  Impact of active learning
T F-Measure T Ac. Error | Active Selection Random Selection Greedy Selecti
. I’ St ) T . ¥ Yy aclection
/Dataset: We synthesized the data from two\ e St Value | Imp. % | Value | Imp. % Query Quota | Evaluation Metrics ACONA ONA | HT |O-SVM | J48 | RF | ONA | HT | O-SVM | J48 | RF
sources, TravisTorrent and GitHub. We select the i‘;f““;:}"ﬁ?i‘iﬁ g-iég —— g-‘;zi S 20 F-Measure | 0.419 0.373 [ 0.293 [ 0.164 | 0327 [ 0.363 | 0.382 | 0.258 | 0.157 | 0.242 | 0.273
: : : er 50 Builds | 0. 1% | 0.173 | -64.8% Ac. Error | 0.168 0.170 | 0.363 | 0.296 | 0.300 | 0.321 | 0.254 | 0.452 | 0.366 | 0.370 | 0.423
pro.Jects Wlth, over 1’090 LOC, and 200 builds After 100 Builds | 0.395 | 27.4% | 0.172 | -65.0% F-Measure T 0.432 0411 | 0337 | 0.169 | 0337 | 0.374 | 0.388 | 0.315 | 0.150 | 0.278 | 0.316
which results in 534 projects with a total amount After 200 Builds | 0.418 | 34.8% | 0.184 | -62.6% 50 Ac. Error | 0.181 0.180 | 0.416 | 0290 | 0291 | 0314 | 0311 | 0434 | 0331 | 0325 | 0.345
of 365,766 builds. After All Builds | 0.434 | 40.0% | 0.181 | -63.2% 100 F-Measure | 0.432 0.405 | 0.366 | 0.176 | 0.350 | 0.384 | 0.380 | 0.355 | 0.167 | 0.320 | 0.354
Average ACONA effectiveness Ac. Error | 0.205 0.264 | 0.413 | 0.287 | 0.286 | 0.306 | 0.378 | 0.425 | 0.310 | 0.305 | 0.324
Evaluation: We use the following two metrics: 1.0 E — Acows Performance of different selection heuristics with fixed query quota
* F-Measure: As the class of failed builds is : Hoeffding Tree 4 . ) A
0s{ | Conclusion:

1. ACONA utilizes a pool of well-trained models built on old projects, which
solves the “cold start” problem for newly started projects.

2. It only learns a combination weight of the model pool and with active

learning, it selects the most valuable builds to query the Cl system for
T update which greatly reduces its total cost.

0.6 1

0.4 4

Accumulated Error

0.2 1

evaluate the percentage of labeled data a ol L owreled 1| 3. ACONA boosts F-Measure by 40.0% and reduced Accumulated Error by
. # of builds received from data stream (0) ° ° .
. model demands for learning. . Accumulated error with project progress 5 63.2%. After adaptation, it outperforms all previously used methods.




