
Enhancing Language Models for Program
Synthesis using Execution

Ansong Ni
03-13-2023

Yale LILY Lab

Talk @MIT_CSAIL

What is Program Synthesis?

• Here we broadly define program synthesis as the tasks to
automatically generate programs from the user intent.

1

Wake me up at 6:30 tomorrow if it rains.

Who avg the most points in the last season?

George Washington à GW
John Adams à JA

if num % 2 == 0:
even_cnt += 1

else:

create_alarm(cond=(weather(…

SELECT name FROM players …

=LEFT(name)&IF(ISNUMBER(…

odd_cnt += 1
print(f’even:{even_cnt},…

User Model Computer

Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS:

2

This process of constructing instruction tables should be very fascinating. There need be no real
danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned
over to the machine itself. — Alan Turing (1945)

Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS
• It involves several important areas in CS

• Programming Languages (PL)
• Software Engineering (SE)
• Machine Learning (ML)
• Natural Language Processing (NLP)
• Human-Computer Interaction (HCI)
• …

3

PL & SE ML

NLPHCI

Program
Synthesis

Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS
• It involves several important areas in CS
• It is a great testbed for intelligence:

• language understanding
• symbolic reasoning
• planning & search
• interactive learning
• …

4

Program
Synthesis

language
understanding

symbolic
reasoning

planning &
search

interactive
learning …

Why is Program Synthesis Important?

• It empowers many real-world applications:

5
Images from: https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html; https://support.microsoft.com/en-
us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89; https://github.com/features/copilot; https://code-as-policies.github.io/;
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

FlashFill - Excel

Virtual Assistants

AI-assisted Programming

Robotics Control
Database Query and Visualization

https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://github.com/features/copilot
https://code-as-policies.github.io/
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

Program Synthesis with Language Models

• What is a language model?
• Predicts the next word given the context
• Learns to maximize 𝑃! 𝑥" 𝑥#, 𝑥$, … , 𝑥"%# given

training data — self-supervised training

• The status quo of pretrained language models:
• They are getting larger
• … and better

• Multi-task learning
• Zero/Few-shot (in-context) learning
• Instruction tuning
• …

6 Images from Graham Neubig and Luke Zettlemoyer

Program Synthesis with Language Models

• (Large) language models trained on code:

7

0.1B
0.1B

0.8B
1.1B

1.5B
2.7B
2.7B

6.0B
6.1B

12.0B
16.1B

20.0B
175.0B
176.0B

540.0B

0.0B 0.2B 2.6B 41.0B 655.4B

CodeGPT
CodeBERT

CodeT5
SantaCoder
CodeParrot

GPT-Neo
PolyCoder

GPT-J
InCoder

Codex-Cushman*
CodeGen
GPT-NeoX

Codex-Davinci*
BLOOM

PaLM-Coder

open-source not open-source *:model size based on broad guess

Program Synthesis with Language Models

• What does it mean for program synthesis in the “LLM era” ?
• The search space can be greatly reduced/optimized by pretrained CodeLMs

à We can do more!
• From domain specific languages (DSL)

• SQL (Zhong et al., 2017; Yu et al., 2018)
• 𝜆-calculus (Zettlemoyer and Collins, 2005; Rabinovich et al., 2017)
• Karel (Bunel et al., 2018; Chen et al., 2019)

• To general-purpose programs
• Basic Python programming (Chen et al., 2021; Austin et al., 2021)
• Data science code generation (Lai et al., 2022; Yin et al., 2022)
• Competition-level code generation (Hendrycks et al., 2021; Li et al., 2022)

8

Program Synthesis with Language Models

• What does it mean for program synthesis in the “LLM era” ?
• The search space can be greatly reduced/optimized by pretrained CodeLMs

à We can do more!
• From supervised learning to zero/few-shot prompting

9 Example from ChatGPT: https://chat.openai.com/

Program Synthesis with Language Models

• So are LLMs the solution to program synthesis?
• Examples: programming with ChatGPT

10 Example from ChatGPT: https://chat.openai.com/

Program Synthesis with Language Models

• What is happening here?
• LLMs are only trained on the surface form of programs
• …yet the semantics of a program is in its execution

• But the best of all…
• Execution can be done automatically!

11

How to incorporate program semantics into LMs
using execution to improve their performance?

Learning Math Reasoning from Self-Sampled Correct and
Partially-Correct Solutions

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov,

Christopher Meek, Dragomir Radev, Jianfeng Gao

ICLR’23

Yale LILY Lab

Paper Presentation 1:

Task and Motivation

• Task: finetuning pretrained LMs for generating programs from math
problems described in natural language
• Motivation - Program Aliasing:

13

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

A goods train runs at a speed of 72kmph and crosses a
250M long platform in 26 seconds. What is the length of
the goods train?

Re
f.

Pr
og

ra
m

N
L

In
pu

t

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n2 * t0
answer = t1 - n1

Al
t.

Pr
og

ra
m

• The same specification (i.e.., question) can
be satisfied by different programs
• However, the training data typically only

have one reference solution for learning
• This causes overfitting as the model keeps

seeing the same solution over multiple
epochs of training

Task and Motivation

• Task: finetuning pretrained LMs for generating programs from math
problems described in natural language
• Motivation - Program Aliasing

14

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

A goods train runs at a speed of 72kmph and crosses a
250M long platform in 26 seconds. What is the length of
the goods train?

Re
f.

Pr
og

ra
m

N
L

In
pu

t

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n2 * t0
answer = t1 - n1

Al
t.

Pr
og

ra
m

• Observation:
• During inference, the model can

sometimes generate programs that are
correct but not necessarily the gold one
• Can we encourage this behavior during

training and learning from the self-
sampled program solutions?
• YES!

Self-Sampling Framework with Full Correctness

• Use a buffer ℬ to save self-sampled programs
• Online sampling and filtering
• Attempt to sample alternative correct solutions

from the model during training (L4)
• Execute the program samples (L6)
• Filter the samples by:

• Full correctness: matches the gold final execution
result (L7)

• Duplication (L8): pruning out “trivial variants”
• Save them in the buffer for learning (L9)

15

Self-Sampling Framework with Full Correctness

• Objectives for learning from multiple targets
• MLE: maximize the likelihood of generating the reference program;
• MLE-Aug: simply summing the loss from the saved correct programs, it

encourages the model to put equal weights on all targets;
• MML: maximize the marginal likelihood of all saved correct solutions, but

note that the gradient is in proportion to the likelihood;
• 𝜷-MML (Guu et al., 2017): an interpolation between MML and MLE-Aug,

with 𝛽 ∈ (0, 1]

16

Different loss functions and gradients used for learning from multiple targets

Learning from Partially-Correct Solutions (PCSs)

• Learning from self-sampled correct solutions are great, but…
• It is also hard to sample, especially for complex programs, it is hard to

“creatively” write a different program that is also correct.
• There are many failed attempts for the model to be creative, and they were

almost there!
• Can we learn from those programs as well?
• YES!

17

Learning from Partially-Correct Solutions (PCSs)

• Intermediate state 𝒔𝒊 is the set of all variables values in the scope
after executing the first 𝑖 steps as the program prefix 𝒚"𝒊
• Note: the state representation is name-agnostic since variable names do not

typically contributes to the semantics of the solutions

18

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

A goods train runs at a speed of 72kmph and crosses a 250M long platform
in 26 seconds. What is the length of the goods train?

Ex
ec

ut
e

Solutions Intermediate States

Learning from Partially-Correct Solutions (PCSs)

• Prefixes of two programs 𝑦"# and 𝑦′"$ are semantically equivalent if
and only if 𝑠# = 𝑠$%
• i.e., those two program prefixes produces the exact same set of variable

values

19

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

n0 = 72
n1 = 250
n2 = 26
t0 = n0 / 3.6
t1 = n1 / t0
t2 = n0 - t1
answer = t0 * t1

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 59.5}
output = 1547

Ev
al

ua
te

 w
ith

 E
xe

cu
to

r

Solutions Intermediate States

Same
State

Semantically
Equivalent

Learning from Partially-Correct Solutions (PCSs)

• A program prefix 𝑦"# is partially-correct if and only if it is semantically
equivalent to the prefix of a known partially-correct solution 𝑦"$∗
• Since we keep all known partially-correct solutions in buffer ℬ, we have

20

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2Kn

ow
n

PC
 S

ol
ut

io
n {72}

{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

n0 = 72
n1 = 250
n2 = 26
t0 = n0 / 3.6
t1 = n1 / t0
t2 = n0 - t1
answer = t0 * t1

Pa
rt

ia
lly

-C
or

re
ct

So

lu
tio

n
Pr

ef
ix {72}

{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 59.5}
output = 1547

Ev
al

ua
te

 w
ith

 E
xe

cu
to

r

Solutions Intermediate States

Partially-
Correct

Learning from Partially-Correct Solutions (PCSs)

• Modification to the main algorithm
• Guided-sampling from known PCS prefix

• Identify partially-correct program prefixes
• Filtering solution prefixes

• PCS is only saved if it is not a prefix of any know PCS
• Learning objectives

• With an auto-regressive generation model, the learning of
𝑃(𝑦!"|𝑥) is independent of 𝑦#", thus no change to the
learning objectives are required.

21

Experimental Setup

• Datasets:
ØMathQA-Python-Filtered: we do template-based deduplication is applied to

the original MathQA-Python dataset to better evaluation generalization
ØGSM5.5K-Python: we automatically converted the natural language formulas

to program solutions in the same style as MathQA-Python

• Language model:
• We use GPT-Neo 125M and 2.7B as our main LM to study

• Evaluation metrics:
• We use pass@k following recent work in math reasoning and program

synthesis

22

Main Results

• Learning from self-sampled solutions improves pass@k

23
Comparing self-sampling with MLE baseline

Main Results

• Partially-correct solutions further improve model performance

24
Comparing self-sampling with MLE baseline

Ablation Studies and Analysis

• MLE-Aug loss function works the best
• It draws learning signal equally from all saved solutions
• MML works the worse, especially when also learning from PCSs

• Dynamics between # of PCSs and FCSs saved in the buffer
• More saved solutions typically results in better pass@k performance
• Large models are better at completing PCS prefixes to be FCS

25

GSM5.5K-Python with finetuned
GPT-Neo 125M model

saved FCSs and PCSs per problem for GSM5.5K-Python (left)
and MathQA-Python-Filtered (right)

Ablation Studies and Analysis

• Dynamics between # of PCSs and FCSs saved in the buffer
• Partially-correct solutions helps learning especially in early stages

26

Growth of the number of saved
FCS and PCS during training

Distribution of the characterization of self-
sampled solutions during training

Takeaways

• Learning from self-sampled solutions can be useful given the right
constraints
• E.g., when you can easily prune out incorrect and duplicated ones

• Programs are not either correct or wrong, they can be partially-
correct.
• Note that our definition of partial correctness is different from say, passing

60% of the test cases, because that program would still be wrong;
• Instead, by comparing execution traces, we identify the first 60% of the

program is on the right track

27

LEVER: Learning to Verify Language-to-Code Generation with Execution

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih,

Sida I. Wang*, Xi Victoria Lin*

arxiv’23, preprint

Yale LILY Lab

Paper Presentation 2:

Task: Language-to-Code Generation

• Task: language-to-code generation using LLMs in few-shot learning
• Cornerstone for many tasks in NLP and ML

29

Spider (Yu et al., 2018) WikiTableQuestions (Pasupat and Liang., 2015)

GSM8k (Cobbe et al., 2021)
MBPP (Austin et al., 2021)

Motivation
• Task: natural language to code generation using large language models

without parameter updates (i.e., finetuning)
• Motivation:

• The CodeLMs are trained on surface code, how do we incorporate execution
semantics into the generation process?

• The cost for finetuning LLMs are huge, how do we improve them without changing
their parameters?

30

-- Example
--NL: How many students in the
class are between 20 and 30
years old?

Ta
sk

In

pu
t

+

-- Translate natural language
question into SQL Query

-- Example
-- NL: What ...
SELECT ...

Fe
w

-s
ho

t
Ex

em
pl

ar
s LMs

Greedy
Decoding

SELECT name FROM students
where age > 20 AND age < 30Pr

og
.

Motivation
• Task: natural language to code generation using large language

models without parameter updates (i.e., finetuning)
• Observation:
• While CodeLMs struggles with precision in the few-shot setting, it often

produces the correct output when enough samples are drawn.

31

SELECT name FROM students
where age > 20 AND age < 30Pr

og
.

1

SELECT COUNT(name) FROM students
where age > 20 AND age < 30Pr

og
.

2

-- Example
--NL: How many students
in the class are between
20 and 30 years old?

Ta
sk

In

pu
t

+

-- Translate natural
language question into
SQL Query

-- Example
-- NL: What ...
SELECT ...

Fe
w

-s
ho

t
Ex

em
pl

ar
s

SELECT student_num FROM students
where age_interval = “20-30”Pr

og
.

k

…

LMs

Sampling

Motivation

• If we can not directly finetune the LLMs…
• Can we train a separate (relatively) small model as an “add-on”, to rerank the

programs samples from LLMs?
• Can we incorporate execution semantics in this model instead?

32

SELECT name FROM students
where age > 20 AND age < 30Pr

og
.

1

SELECT COUNT(name) FROM students
where age > 20 AND age < 30Pr

og
.

2

-- Example
--NL: How many students
in the class are between
20 and 30 years old?

Ta
sk

In

pu
t

+

-- Translate natural
language question into
SQL Query

-- Example
-- NL: What ...
SELECT ...

Fe
w

-s
ho

t
Ex

em
pl

ar
s

SELECT student_num FROM students
where age_interval = “20-30”Pr

og
.

k

…

LLMs

Sampling

Execution
Semantics

Small
Model

LEVER : An Overview

• We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation

33

SELECT name FROM students
where age > 20 AND age < 30Pr

og
.

1

SELECT COUNT(name) FROM students
where age > 20 AND age < 30Pr

og
.

2

-- Example
--NL: How many
students in the
class are between
20 and 30 years
old?

Ta
sk

 In
pu

t

+

-- Translate
natural language
question into SQL
Query

-- Example
-- NL: What ...
SELECT ... Fe

w
-s

ho
t E

xe
m

pl
ar

s

SELECT COUNT(*) FROM students
where age < 30 AND age > 20Pr

og
.

3
SELECT student_num FROM students
where age_interval = “20-30”Pr

og
.

k

…

LMs

Sampling

0.35

0.27

0.13

0.11

LEVER : An Overview

• We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation; 2) Execution

34

SELECT name FROM students
where age > 20 AND age < 30Pr
og

.
1

SELECT COUNT(name) FROM students
where age > 20 AND age < 30Pr

og
.

2

SELECT COUNT(*) FROM students
where age < 30 AND age > 20Pr

og
.

3

SELECT student_num FROM students
where age_interval = “20-30”Pr

og
.

k

…

John, ..

Re
su

lt
1

5

Re
su

lt
2

5

Re
su

lt
3

Err: No
column..Re

su
lt

k

Execute

Executor

0.35

0.27

0.13

0.11

…

LEVER : An Overview

• We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation; 2) Execution; 3) Verification

35

John, ..

Re
su

lt
1

5
Re

su
lt

2

5

Re
su

lt
3

Err: No
column..Re

su
lt

k

Verify

Verifier

0.15Ve
r.

Pr
ob

 1

0.85Ve
r.

Pr
ob

 2

0.95Ve
r.

Pr
ob

 3

0.05Ve
r.

Pr
ob

 k

NL

Code

with…

=

LEVER : Detailed Formulation

• Detailed formulation:
• We parameterize the verifier as a binary classifier, with the input as:

• natural language 𝑥; program sample -𝑦; and its execution result ℇ(-𝑦)

• Given the input 𝑥 and a program sample -𝑦 ∈ 𝑆, we obtain the reranking
probability as the joint probability of generation and passing verification:

• We further aggregate the reranking probability of the programs in the samples
that executes to the same result, and obtains the final score

36

LEVER : Detailed Formulation

• Detailed formulation:
• We further aggregate the reranking probability of the programs in the samples

that executes to the same result, and obtains the final score

37

Pr
og

.
1

Pr
og

.
2

Pr
og

.
3

Pr
og

.
k

…

John, ..

Re
su

lt
1

5

Re
su

lt
2

5

Re
su

lt
3

Err: No
column..Re

su
lt

k
Execute

Executor

Verify

Verifier

0.15Ve
r.

Pr
ob

 1

0.85Ve
r.

Pr
ob

 2

0.95Ve
r.

Pr
ob

 3

0.05Ve
r.

Pr
ob

 k

NL

Code

with

0.35

0.27

0.13

0.11

0.05

0.35

0.01

… …

Final Score

Agg.

=

Generation Prob.

×

×

×

×

Learning of LEVER

• Training data creation - for each input 𝑥:
• Sample program candidates on the training set examples 0𝑦'~𝑃()(𝑦|𝑥)
• Execute the programs to obtain their execution results 0𝑧' = ℇ(0𝑦')
• Use gold exec. result or test cases to automatically label their correctness 𝑣'
• We created a set of training examples 𝑥, 0𝑦', 0𝑧', 𝑣' '*#" for each input 𝑥

• Learning objective:
• Negative log-likelihood, normalized by the number of program candidates

38

Experimental Setup

• Datasets:
ØSpider (Yu et al., 2018): text-to-SQL semantic parsing;
ØWikiTQ (Pasupat et al., 2015): table question answering
ØGSM8k (Cobbe et al., 2021): math word problems
ØMBPP (Austin et al., 2021): basic python programming

39

Spider

WikiTQ
GSM8k MBPP

SQL

Python

Experimental Setup

• Datasets: 4 language-to-code benchmarks from different domains
• CodeLMs:

• Codex-davinci-002: best CodeLM available, accessible through API
• InCoder-6B: open-source
• CodeGen-16B: open-source

• Evaluation metric
• Execution Accuracy (i.e., pass@1)

• Baselines:
• Greedy: choose most likely token per decoding step
• Maximum Likelihood (ML): choose the program with highest generation prob.
• Error Pruning + ML (EP+ML): first prune out the programs with execution error
• EP + Voting: majority vote of the error-free execution results

40

Codex + LEVER vs. Previous SoTA Methods

41

• Codex + LEVER achieves new SoTA results on all 4 benchmarks
• It outperforms all previous finetuning and few-shot learning results

Spider
WikiTQ

GSM8k

MBPP

Main Ablation on Codex

42

• Execution information are crucial to the performance improvement

Main Ablation on Codex

43

• Execution information are crucial to the performance improvement
• Exec. agg. works well for Python but not SQL generation datasets

Main Ablation on Codex

44

• Execution information are crucial to the performance improvement
• Exec. agg. works well for Python but not SQL generation datasets
• LEVER works well with weakly-supervised setting, where gold

programs are not provided for learning

Results on Open-Source CodeLMs

45

• Even larger improvements (e.g., up to
30.0%) are observed for InCoder and
CodeGen models;
• Similar findings for ablation study
• With the exception that voting & exec. agg.

methods decreases the performance

Analysis: Data Scaling

46

• LEVER works better under few-resource settings than generative
finetuning

Verification vs. Generation w/ decreasing training data

Analysis: Data Scaling

47

• LEVER is sensitive to the sample size at inference time but not training
time thus a higher sampling budget should be applied during
inference

Ablation on sample size at inference time Ablation on sample size at training time

Analysis: Between-LM Transfer

48

• LEVER still non-trivially improves the baseline performance in most cases;
• Transfer typically works better when the percentage of positive labels are closer

Between-LM Transfer results for Spider Between-LM Transfer results for GSM8k

49

• When LEVER succeeds:
• It is often because the execution results provide crucial information such as execution errors,

variable type and range

• When LEVER fails:
• The most common reason is that no correct program can be found in the samples (i.e.,

upper-bound is reached), which is especially the case for weaker CodeLMs

When LEVER reranks a correct program at the top but
the greedy decoding fails.

When LEVER fails to rank a correct program at the top.

Quantitative Error Analysis

Takeaways

• How can we use a smaller model to help improve LLMs?
• One way is to train a separate model that operates on the output of LLMs,

such as verification, reranking, etc.

• We can also try to incorporate additional information (e.g., execution)
in the separate model with the blackbox LLMs
• Neural-symbolic-neural approach is possible!

50

Thanks!

Yale LILY Lab

51

Also thanks to my wonderful collaborators:

