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What is Program Synthesis?

• Here we broadly define program synthesis as the tasks to 
automatically generate programs from the user intent.
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Wake me up at 6:30 tomorrow if it rains.

Who avg the most points in the last season?

George Washington à GW
John Adams à JA

if num % 2 == 0:
even_cnt += 1

else:

create_alarm(cond=(weather(…

SELECT name FROM players …

=LEFT(name)&IF(ISNUMBER(…

odd_cnt += 1
print(f’even:{even_cnt},…

User Model Computer



Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS:
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This process of constructing instruction tables should be very fascinating. There need be no real 
danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned 
over to the machine itself.                                                                              — Alan Turing (1945)



Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS
• It involves several important areas in CS

• Programming Languages (PL)
• Software Engineering (SE)
• Machine Learning (ML)
• Natural Language Processing (NLP)
• Human-Computer Interaction (HCI)
• …
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Why is Program Synthesis Important?

• On a higher level:
• It is one of the oldest and hardest problems in AI and CS
• It involves several important areas in CS
• It is a great testbed for intelligence:

• language understanding
• symbolic reasoning
• planning & search
• interactive learning
• …
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Why is Program Synthesis Important?

• It empowers many real-world applications:
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Images from: https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html; https://support.microsoft.com/en-
us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89; https://github.com/features/copilot; https://code-as-policies.github.io/; 
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

FlashFill - Excel

Virtual Assistants

AI-assisted Programming

Robotics Control
Database Query and Visualization
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Program Synthesis with Language Models

• What is a language model?
• Predicts the next word given the context 
• Learns to maximize 𝑃! 𝑥" 𝑥#, 𝑥$, … , 𝑥"%# given 

training data — self-supervised training

• The status quo of pretrained language models:
• They are getting larger
• … and better

• Multi-task learning
• Zero/Few-shot (in-context) learning
• Instruction tuning
• …

6 Images from Graham Neubig and Luke Zettlemoyer



Program Synthesis with Language Models

• (Large) language models trained on code:
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Program Synthesis with Language Models

• What does it mean for program synthesis in the “LLM era” ?
• The search space can be greatly reduced/optimized by pretrained CodeLMs

à We can do more!
• From domain specific languages (DSL)

• SQL (Zhong et al., 2017; Yu et al., 2018)
• 𝜆-calculus (Zettlemoyer and Collins, 2005; Rabinovich et al., 2017)
• Karel (Bunel et al., 2018; Chen et al., 2019)

• To general-purpose programs
• Basic Python programming (Chen et al., 2021; Austin et al., 2021)
• Data science code generation (Lai et al., 2022; Yin et al., 2022) 
• Competition-level code generation (Hendrycks et al., 2021; Li et al., 2022)
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Program Synthesis with Language Models

• What does it mean for program synthesis in the “LLM era” ?
• The search space can be greatly reduced/optimized by pretrained CodeLMs

à We can do more!
• From supervised learning to zero/few-shot prompting 

9 Example from ChatGPT: https://chat.openai.com/



Program Synthesis with Language Models

• So are LLMs the solution to program synthesis? 
• Examples: programming with ChatGPT

10 Example from ChatGPT: https://chat.openai.com/



Program Synthesis with Language Models

• What is happening here?
• LLMs are only trained on the surface form of programs
• …yet the semantics of a program is in its execution

• But the best of all…
• Execution can be done automatically!

11

How to incorporate program semantics into LMs 
using execution to improve their performance?
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Task and Motivation

• Task: finetuning pretrained LMs for generating programs from math 
problems described in natural language
• Motivation - Program Aliasing: 
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n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

A goods train runs at a speed of 72kmph and crosses a 
250M long platform in 26 seconds. What is the length of 
the goods train?
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t1 = n2 * t0
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• The same specification (i.e.., question) can 
be satisfied by different programs  
• However, the training data typically only 

have one reference solution for learning
• This causes overfitting as the model keeps 

seeing the same solution over multiple 
epochs of training



Task and Motivation

• Task: finetuning pretrained LMs for generating programs from math 
problems described in natural language
• Motivation - Program Aliasing
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n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2
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• Observation:
• During inference, the model can 

sometimes generate programs that are 
correct but not necessarily the gold one
• Can we encourage this behavior during 

training and learning from the self-
sampled program solutions?
• YES!



Self-Sampling Framework with Full Correctness

• Use a buffer ℬ to save self-sampled programs
• Online sampling and filtering
• Attempt to sample alternative correct solutions 

from the model during training (L4)
• Execute the program samples (L6)
• Filter the samples by:

• Full correctness: matches the gold final execution 
result (L7)

• Duplication (L8): pruning out “trivial variants”
• Save them in the buffer for learning (L9)
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Self-Sampling Framework with Full Correctness

• Objectives for learning from multiple targets
• MLE: maximize the likelihood of generating the reference program;
• MLE-Aug: simply summing the loss from the saved correct programs, it 

encourages the model to put equal weights on all targets;
• MML: maximize the marginal likelihood of all saved correct solutions, but 

note that the gradient is in proportion to the likelihood;
• 𝜷-MML (Guu et al., 2017): an interpolation between MML and MLE-Aug, 

with 𝛽 ∈ (0, 1]

16

Different loss functions and gradients used for learning from multiple targets



Learning from Partially-Correct Solutions (PCSs)

• Learning from self-sampled correct solutions are great, but…
• It is also hard to sample, especially for complex programs, it is hard to 

“creatively” write a different program that is also correct.
• There are many failed attempts for the model to be creative, and they were 

almost there!
• Can we learn from those programs as well?
• YES!
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Learning from Partially-Correct Solutions (PCSs)

• Intermediate state 𝒔𝒊 is the set of all variables values in the scope 
after executing the first 𝑖 steps as the program prefix 𝒚"𝒊
• Note: the state representation is name-agnostic since variable names do not 

typically contributes to the semantics of the solutions
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n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

A goods train runs at a speed of 72kmph and crosses a 250M long platform 
in 26 seconds. What is the length of the goods train?

Ex
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Solutions Intermediate States



Learning from Partially-Correct Solutions (PCSs)

• Prefixes of two programs 𝑦"# and 𝑦′"$ are semantically equivalent if 
and only if 𝑠# = 𝑠$%
• i.e., those two program prefixes produces the exact same set of variable 

values
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n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

n0 = 72
n1 = 250
n2 = 26
t0 = n0 / 3.6
t1 = n1 / t0
t2 = n0 - t1
answer = t0 * t1

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 59.5}
output = 1547

Ev
al

ua
te

 w
ith

 E
xe

cu
to

r

Solutions Intermediate States

Same 
State

Semantically 
Equivalent



Learning from Partially-Correct Solutions (PCSs)

• A program prefix 𝑦"# is partially-correct if and only if it is semantically 
equivalent to the prefix of a known partially-correct solution 𝑦"$∗
• Since we keep all known partially-correct solutions in buffer ℬ, we have
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Learning from Partially-Correct Solutions (PCSs)

• Modification to the main algorithm
• Guided-sampling from known PCS prefix

• Identify partially-correct program prefixes
• Filtering solution prefixes

• PCS is only saved if it is not a prefix of any know PCS
• Learning objectives

• With an auto-regressive generation model, the learning of 
𝑃(𝑦!"|𝑥) is independent of 𝑦#", thus no change to the 
learning objectives are required.
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Experimental Setup

• Datasets:
ØMathQA-Python-Filtered: we do template-based deduplication is applied to 

the original MathQA-Python dataset to better evaluation generalization 
ØGSM5.5K-Python: we automatically converted the natural language formulas 

to program solutions in the same style as MathQA-Python

• Language model: 
• We use GPT-Neo 125M and 2.7B as our main LM to study

• Evaluation metrics: 
• We use pass@k following recent work in math reasoning and program 

synthesis
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Main Results

• Learning from self-sampled solutions improves pass@k

23
Comparing self-sampling with MLE baseline



Main Results

• Partially-correct solutions further improve model performance

24
Comparing self-sampling with MLE baseline



Ablation Studies and Analysis

• MLE-Aug loss function works the best
• It draws learning signal equally from all saved solutions
• MML works the worse, especially when also learning from PCSs

• Dynamics between # of PCSs and FCSs saved in the buffer
• More saved solutions typically results in better pass@k performance
• Large models are better at completing PCS prefixes to be FCS

25

GSM5.5K-Python with finetuned 
GPT-Neo 125M model

# saved FCSs and PCSs per problem for GSM5.5K-Python (left) 
and MathQA-Python-Filtered (right)



Ablation Studies and Analysis

• Dynamics between # of PCSs and FCSs saved in the buffer
• Partially-correct solutions helps learning especially in early stages

26

Growth of the number of saved 
FCS and PCS during training

Distribution of the characterization of self-
sampled solutions during training



Takeaways

• Learning from self-sampled solutions can be useful given the right 
constraints
• E.g., when you can easily prune out incorrect and duplicated ones

• Programs are not either correct or wrong, they can be partially-
correct.
• Note that our definition of partial correctness is different from say, passing 

60% of the test cases, because that program would still be wrong;
• Instead, by comparing execution traces, we identify the first 60% of the 

program is on the right track
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Task: Language-to-Code Generation

• Task: language-to-code generation using LLMs in few-shot learning
• Cornerstone for many tasks in NLP and ML

29

Spider (Yu et al., 2018) WikiTableQuestions (Pasupat and Liang., 2015)

GSM8k (Cobbe et al., 2021)
MBPP (Austin et al., 2021)



Motivation
• Task: natural language to code generation using large language models 

without parameter updates (i.e., finetuning)
• Motivation:

• The CodeLMs are trained on surface code, how do we incorporate execution 
semantics into the generation process?

• The cost for finetuning LLMs are huge, how do we improve them without changing 
their parameters? 
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Motivation
• Task: natural language to code generation using large language 

models without parameter updates (i.e., finetuning)
• Observation:
• While CodeLMs struggles with precision in the few-shot setting, it often 

produces the correct output when enough samples are drawn.

31

SELECT name FROM students
where age > 20 AND age < 30Pr

og
. 

1

SELECT COUNT(name) FROM students
where age > 20 AND age < 30Pr

og
. 

2

-- Example
--NL: How many students 
in the class are between 
20 and 30 years old?

Ta
sk

 
In

pu
t 

+

-- Translate natural 
language question into 
SQL Query

-- Example
-- NL: What ...
SELECT ... 

Fe
w

-s
ho

t 
Ex

em
pl

ar
s

SELECT student_num FROM students
where age_interval = “20-30”Pr

og
. 

k

…

LMs

Sampling



Motivation

• If we can not directly finetune the LLMs…
• Can we train a separate (relatively) small model as an “add-on”, to rerank the 

programs samples from LLMs?
• Can we incorporate execution semantics in this model instead? 
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LEVER         : An Overview

• We propose LEVER, which learns to verify language-to-code generation 
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation
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LEVER         : An Overview

• We propose LEVER, which learns to verify language-to-code generation 
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation; 2) Execution
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LEVER         : An Overview

• We propose LEVER, which learns to verify language-to-code generation 
by LLMs trained code (CodeLMs), with the help of execution.
• LEVER has three main steps: 1) Generation; 2) Execution; 3) Verification
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LEVER         : Detailed Formulation

• Detailed formulation:
• We parameterize the verifier as a binary classifier, with the input as:

• natural language 𝑥; program sample -𝑦; and its execution result ℇ(-𝑦)

• Given the input 𝑥 and a program sample -𝑦 ∈ 𝑆, we obtain the reranking 
probability as the joint probability of generation and passing verification:

• We further aggregate the reranking probability of the programs in the samples 
that executes to the same result, and obtains the final score
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LEVER         : Detailed Formulation

• Detailed formulation:
• We further aggregate the reranking probability of the programs in the samples 

that executes to the same result, and obtains the final score
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Learning of LEVER                      

• Training data creation - for each input 𝑥:
• Sample program candidates on the training set examples 0𝑦'~𝑃()(𝑦|𝑥)
• Execute the programs to obtain their execution results 0𝑧' = ℇ(0𝑦')
• Use gold exec. result or test cases to automatically label their correctness 𝑣'
• We created a set of training examples 𝑥, 0𝑦', 0𝑧', 𝑣' '*#" for each input 𝑥

• Learning objective: 
• Negative log-likelihood, normalized by the number of program candidates
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Experimental Setup

• Datasets:
ØSpider (Yu et al., 2018): text-to-SQL semantic parsing;
ØWikiTQ (Pasupat et al., 2015): table question answering
ØGSM8k (Cobbe et al., 2021): math word problems
ØMBPP (Austin et al., 2021): basic python programming

39
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Experimental Setup

• Datasets: 4 language-to-code benchmarks from different domains
• CodeLMs:

• Codex-davinci-002: best CodeLM available, accessible through API
• InCoder-6B: open-source
• CodeGen-16B: open-source

• Evaluation metric
• Execution Accuracy (i.e., pass@1)

• Baselines:
• Greedy: choose most likely token per decoding step 
• Maximum Likelihood (ML): choose the program with highest generation prob.
• Error Pruning + ML (EP+ML): first prune out the programs with execution error
• EP + Voting: majority vote of the error-free execution results
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Codex + LEVER vs. Previous SoTA Methods

41

• Codex + LEVER achieves new SoTA results on all 4 benchmarks
• It outperforms all previous finetuning and few-shot learning results

Spider
WikiTQ

GSM8k

MBPP



Main Ablation on Codex

42

• Execution information are crucial to the performance improvement



Main Ablation on Codex
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• Execution information are crucial to the performance improvement
• Exec. agg. works well for Python but not SQL generation datasets



Main Ablation on Codex
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• Execution information are crucial to the performance improvement
• Exec. agg. works well for Python but not SQL generation datasets
• LEVER works well with weakly-supervised setting, where gold 

programs are not provided for learning



Results on Open-Source CodeLMs

45

• Even larger improvements (e.g., up to 
30.0%) are observed for InCoder and 
CodeGen models;
• Similar findings for ablation study
• With the exception that voting & exec. agg. 

methods decreases the performance



Analysis: Data Scaling
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• LEVER works better under few-resource settings than generative 
finetuning

Verification vs. Generation w/ decreasing training data



Analysis: Data Scaling
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• LEVER is sensitive to the sample size at inference time but not training 
time thus a higher sampling budget should be applied during 
inference

Ablation on sample size at inference time Ablation on sample size at training time



Analysis: Between-LM Transfer
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• LEVER still non-trivially improves the baseline performance in most cases;
• Transfer typically works better when the percentage of positive labels are closer

Between-LM Transfer results for Spider Between-LM Transfer results for GSM8k
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• When LEVER succeeds: 
• It is often because the execution results provide crucial information such as execution errors, 

variable type and range

• When LEVER fails:
• The most common reason is that no correct program can be found in the samples (i.e., 

upper-bound is reached), which is especially the case for weaker CodeLMs

When LEVER reranks a correct program at the top but 
the greedy decoding fails.

When LEVER fails to rank a correct program at the top.

Quantitative Error Analysis



Takeaways

• How can we use a smaller model to help improve LLMs? 
• One way is to train a separate model that operates on the output of LLMs, 

such as verification, reranking, etc.

• We can also try to incorporate additional information (e.g., execution) 
in the separate model with the blackbox LLMs
• Neural-symbolic-neural approach is possible!
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