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What is Program Synthesis? @@ @@

* Here we broadly define program synthesis as the tasks to
automatically generate programs from the user intent.

create_alarm(cond=(weather(..

/{ Wake me up at 6:30 tomorrow if it rains.

. . ? (
Who avg the most points in the last season® SELECT name FROM players ..

=LEFT(name)&IF (ISNUMBER(.. gi

4 N\
Model odd_cnt += 1 Computer

print(f’even:{even_cnt},..
o J

George Washington 2> GW
John Adams =2 JA

User

if num % 2 =
even_cnt +
else:
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Why is Program Synthesis Important?

A

* On a higher level:
* |tis one of the oldest and hardest problems in Al and CS:

This process of constructing instruction tables should be very fascinating. There need be no real
danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned

over to the machine itself. — Alan Turing (1945)
Programming D. Gries
Languages Editor
Toward AutO" %%?grlc\id%lgf\l/ersity,* Stanford, California
. an
matic Program — Eshwdgvasner
Synth GSiS Menlo Park, California
Communications March 1971
of Volume 14
the ACM Number 3
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Why is Program Synthesis Important? @@ @@

* On a higher level:

* |t involves several important areas in CS
* Programming Languages (PL)
Software Engineering (SE)

Machine Learning (ML)
Natural Language Processing (NLP) A
Human-Computer Interaction (HCI) r

Program '

(2
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Why is Program Synthesis Important?

* On a higher level:

* It is a great testbed for intelligence:
* language understanding
symbolic reasoning

planning & search

interactive learning
Program
. "
|
I I I I I
language symbolic planning & interactive
understanding reasoning search learning
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Why is Program Synthesis

Important?

LA

* It empowers many real-world applications:

Akkiraju, Ravali
Aksenova, Evelyn

Alexopoulos, Alexia
Allu, Deevena
Anderson, Kaari
Andreas, Katerina
Ankitham, Baaj
Aunina, Kitija
Banis, Irini
Baric, Elvis
Batard, Alexandre
Berger, Dominic
Berger, Lena
Berger, Lucas

Type a few examples

to show a clear pattern

FlashFil

ab, [E Merge v  General

Let me know when you want to
know more — I'll be here.

Send me Esquire Wisdom daily

What time would you like me to
send your daily Esquire Wisdom?

8:30pm

Ok, Esquire will start sending
Large <—--- Stack the blocks on the empty bowl. e o SRy 66y 81 S50
Language .

Model APIs

Control APIs
l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stack)

def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names)
for i in range(n_objs - 1):
obj0 = obj_names[i + 1]
obj1 = obj_names[i]
(objo, obj1)

rtual Assistants

Robotics Control

@ parse_expenses.py

import datetime

def parse_expenses(expenses_string):

Parse the list of expenses and return the list of triples (date, value, currency).

Ignore lines starting with #.

Parse the date using datetime.

Example expenses_string:
2016-01-02 -34.01 USD
2016-01-03 2.59 DKK
2016-01-03 -2.72 EUR

expenses = []
for line in expenses_string.splitlines():
if line.startswith("#"):
continue
date, value, currency = line.split("

& 10ax.online tableau.com
S Wine Sales

Analysis complete @ Refresh <
Search )
Dimensions

® Country

® County

4oe Description x

ste Desigration Try asking these questions:
© Province 8
o e most expensive Price
e Taster Titter Handle

top Country by sum of Number of Records
e Tite

e Varity sum of Points
= vitoge by Country
i Winery

sum of Points by Country as a map

leasures Country in US
 Number of Records

» Poets sort Country in alphabetical order
# Price

Feadback

Database Query and Visualization

ing

LearnMore &
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Program Synthesis with Language Models @@@@

* What is a language model? ;
* Predicts the next word given the context P(X)=]]Pil|z1,...,2i-1)
* Learns to maximize Pg(x,|xq, X3, ..., Xy—1) given = T |
training data — self-supervised training hetviere  ‘Gonlext

e The status quo of pretrained language models:

* They are getting larger A _— -
rillion — : i :j
e ... and better i Prlreck .
O <
* Multi-task learning
» Zero/Few-shot (in-context) learning . “’\
* Instruction tuning iion o W \
] Rl Lots more data
° .. —_ G '\'2 = 0 0 (and compute)!
1 million — 1’.\2‘ o o o’ o
I T T -
2018 2019 2020 Ye

ar
6 Images from Graham Neubig and Luke Zettlemoyer —Y ale



Program Synthesis with Language Models @

e (Large) language models trained on code:

PaLM-Coder
BLOOM
Codex-Davinci*
GPT-NeoX 20.0B
CodeGen 16.1B
Codex-Cushman* s 12.08
InCoder I 6.1B
GPT-) . 6.0B
PolyCoder e 2 .78
GPT-Neo e 2 7B
CodeParrot TS .58
SChicleGchlame B
CodeT5 0.8B
CodeBERT
CodeGPT

540.0B

176.0B
175.0B

0.1B
0.1B

0.0B 0.2B 2.6B 41.0B 655.4B

B open-source M not open-source *:model size based on broad guess
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Program Synthesis with Language Models @@ @@

* What does it mean for program synthesis in the “LLM era” ?
* The search space can be greatly reduced/optimized by pretrained CodeLMs

= We can do more!

* From domain specific languages (DSL)
* SQL (Zhong et al., 2017; Yu et al., 2018)
* A-calculus (Zettlemoyer and Collins, 2005; Rabinovich et al., 2017)
» Karel (Bunel et al., 2018; Chen et al., 2019)

* To general-purpose programs
e Basic Python programming (Chen et al., 2021; Austin et al., 2021)
» Data science code generation (Lai et al., 2022; Yin et al., 2022)
* Competition-level code generation (Hendrycks et al., 2021; Li et al., 2022)

: Yale



Program Synthesis with Language Models @@ @@

* What does it mean for program synthesis in the “LLM era” ?
* The search space can be greatly reduced/optimized by pretrained CodeLMs

- We can do more!
* From supervised learning to zero/few-shot prompting

ﬁ’@ﬂ can you write a wrong implementation of “is_prime" function in python

Sure! Here's a wrong implementation of a function to check if a number is prime or not:

(number):
number <= 1:

i in range(Z2, number):

(number % i) == 0:

Yale



Program Synthesis with Language Models @I @@

* So are LLMs the solution to program synthesis?
* Examples: programming with ChatGPT

AN ‘ can you write a wrong implementation of “is_prime" function in python can you give me a wrong implementation for determine odd/even numbers

Sure! Here's a wrong implementation of a function to check if a number is prime or not: Sure, here is an incorrect implementation to determine if a number is odd or even:

) copy code () copy code

(number):
f number <=
CUut
range(2, number):
(number % i) ==

I

This implementation only works for positive integers, but it fails for negative numbers and

zero.|A correct implementation to handle all cases would be:

This implementation is wrong because it only checks if the number is divisible by integers

less than itself, but a number can also be divisible by numbers greater than itself. For [ copy code

example, this function would return “True" for “4°, which is not a prime number.

A better implementation would be to check if the number is divisible by any number up to

its square root.

Yale



Program Synthesis with Language Models @@@@

* What is happening here?
* LLMs are only trained on the surface form of programs
 ...yet the semantics of a program is in its execution

e But the best of all...
e Execution can be done automatically!

How to incorporate program semantics into LMs
using execution to improve their performance?

. Yale



Paper Presentation 1:

Learning Math Reasoning from Self-Sampled Correct and
Partially-Correct Solutions

LIy

Yale LILY Lab

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov,

Christopher Meek, Dragomir Radey, Jianfeng Gao

ICLR’23
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: Task and Motivation @@ @@

 Task: finetuning pretrained LMs for generating programs from math
problems described in natural language

A goods train runs at a speed of 72kmph and crosses a
250M long platform in 26 seconds. What is the length of
the goods train?

* Motivation - Program Aliasing:

* The same specification (i.e.., question) can
be satisfied by different programs

[ Ref. Program ] | NL |
Input

. . . ne = 72 ne = 72
 However, the training data typically only Nl = 250 £ | n1 = 250
have one reference solution for learning nz = 26 g |n2 =26
t0 = n@ * 0.2778 & | t0 = no * 0.2778
* This causes overfitting as the model keeps tl =nl/ to S [tl=n2*te
. . . t2 = n2 - tl answer = tl1 - nl
seeing the same solution over multiple AT -

epochs of training

. Yale



% Task and Motivation @@ @@

 Task: finetuning pretrained LMs for generating programs from math
problems described in natural language

A goods train runs at a speed of 72kmph and crosses a
250M long platform in 26 seconds. What is the length of
the goods train?

* Motivation - Program Aliasing

e Observation:

[ Ref. Program ] | NL |
Input

. Durlng_ inference, the model can o - 7o " 1o - 7o
sometimes generate programs that are nl = 250 £ | n1 = 250
. n2 = 26 ™ | n2 = 26
correct but not necessarily the gold one Y g |to - no * 0.2778
. . . tl = nl / to Z | tl =n2 * to
. Car.1 we encourage this behavior during >~ - 11 e~ t1 - m
training and learning from the self- answer = t@ * t2 T

sampled program solutions?

* YES!

y Yale



% Self-Sampling Framework with Full Correctness @@ @@

* Use a buffer B to save self-sampled programs  Aigorithm 1 Training Update

. . . . Input:
* Online sampling and filtering Parameterized model P (y|);
Execptgr E:YV— Z;
* Attempt to sample alternative correct solutions £ tuaining erample (1) 14" );
. Lo Buffer B for this input =
from the model during training (L4) 1: T B[=Uthen
2: B+« B+ {y*}/* initialize buffer */
* Execute the program samples (L6) 3: end if
. 4:|Y < SampleSolutions(x, Py, B)
* Filter the samples by: 5: for g in ¥ do
. ) 6: | 2+ E(y) /* execute solution */
* Full correctness: matches the gold final execution 7. [ifisCorreci(Z, z*) then
8: if not isDuplicate(, B) then
result (L7) 9: |B < B+ 4 /* save to buffer */ |
* Duplication (L8): pruning out “trivial variants” }(1): grggif
. enail
e Save them in the buffer for learning (L9) 12: end for

update

13: 0 +— Vo L(x,B, Py)

. Yale



% Self-Sampling Framework with Full Correctness @@ @@

* Objectives for learning from multiple targets
 MLE: maximize the likelihood of generating the reference program;

* MLE-Aug: simply summing the loss from the saved correct programs, it
encourages the model to put equal weights on all targets;

* MML: maximize the marginal likelihood of all saved correct solutions, but
note that the gradient is in proportion to the likelihood;

* f-MML (Guu et al., 2017): an interpolation between MML and MLE-Aug,
with g € (0, 1]

Name Loss Functions L(z, B, Pp) Gradients Vg (z, B, Py)

MLE —log Py(y* |x) —Vo log Ps(y*|x)
MLE-Aug = sen log Po(f]z) = gen Vo log Po(9|z)

MML —log >3 Po(9]z) — S sen %Ve log Ps(9|z)
B-MML ~11og Y, Po(@l2)® - Yem Z;f;g%m)ﬁ Vo log Py (9]x)

Different loss functions and gradients used for learning from multiple targets

. Yale



% Learning from Partially-Correct Solutions (PCSs) @@ @@

* Learning from self-sampled correct solutions are great, but...

* |tis also hard to sample, especially for complex programs, it is hard to
“creatively” write a different program that is also correct.

* There are many failed attempts for the model to be creative, and they were
almost there!

* Can we learn from those programs as well?

* YES!

, Yale
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]

Learning from Partially-Correct Solutions (PCSs) @@@@

* Intermediate state s; is the set of all variables values in the scope
after executing the first i steps as the program prefix y_;

* Note: the state representation is name-agnostic since variable names do not

typically contributes to the semantics of the solutions

A goods train runs at a speed of 72kmph and crosses a 250M long platform
in 26 seconds. What is the length of the goods train?

ne = 72

nl = 250

n2 = 26

t0 = n6 * 0.2778
tl = nl / to

t2 = n2 - t1
answer = to * t2

Solutions

18

[ Execute ]

172}

{72, 250}

{72, 250, 26}

{72, 250, 26, 20.0}

{72, 250, 26, 20.0, 12.5}

{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

Intermediate States

Yale



= Learning from Partially-Correct Solutions (PCSs) @@

* Prefixes of two programs y.; and y'_ j are semantically equivalent if

and only if 5; = s;

* i.e., those two program prefixes produces the exact same set of variable

values

|{ Semantically 1

I Equivalent " el

Smm————r- in@
: 'nl
""" * n2

| 10

P tl
(il
t2

answer = to * t1

19

72
250
26
ne * 0.2778
nl / to
€2 =n2 - t1

answer = t0 * t2

= 72

= 250

= 26
=no / 3.6
= nl / to
= no - ti

Solutions

-

Evaluate with Executor

{72}
{72, 250}
{72, 250, 26}

e o o TR T o

{72}
{72, 250}
{72, 250, 26}

172, 250, 26, 20.0} _ __

({72, 250, 26, 20.0, 12.5

{72, 250, 26, 20.9, 12.5
output = 1547

Intermediate States

( Same
| State 1
ﬁ———/
i
1
1
1
1
1
1
= i
}.: ___________
» 29.5}

Yale



Learning from Partially-Correct Solutions (PCSs) @@@@

* A program prefix y.; is partially-correct if and only if it is semantically
equivalent to the prefix of a known partially-correct solution y_ ;

* Since we keep all known partially-correct solutions in buffer B, we have

PartiallyCorrect(y<;) <= Jy* € B. Ij < |[y*| s.t. 57 = s;

|

c | NG = 72

§ nl = 250

S |n2 =26

O [t = n@ * 0.2778

€ [tl=n1/to

© |t2 =n2 - t1

> answer = t@Q * t2
N—— |
p—

*8'.5 ne = 72

£8|nl = 250

(@]

25| n2 = 26

£2|te =ne / 3.6
a®lt1 =n1/ to
| e e e e e, ——— -

t2 = n0 - t1

answer = to * t1
20

Solutions

e

Evaluate with Executor

—

172}
172,
172,

250}
250,

e o o TR T o e

I 1
output = 270 D

|{ Partially-

1 Correct

——————

{72}

{72, 250}

{72, 250, 26}

{72, 250, 26, 20.0} ____
{72, 250, 26, 20.0,

{72, 250, 26, 20.0,
output = 1547

Intermediate States

Yale



% Learning from Partially-Correct Solutions (PCSs) @@@@

* Modification to the main algorithm Algorithm 1 Training Update
. . . Input:
* Guided-sampling from known PCS prefix Parametrized mode Py(y|o);
xecutor ¢ : )V — Z;
Algorithm 2 SampleSolutions(z, Py, B) with partially-correct solutions A training exarpp.le (z,y*,2%);
Input: Model Py (y|z); the NL input z and a set of partially-correct solutions B q _f;‘gf"er [Zf:;: this input z
Output: Solution samples Y. -1 = €n o
1: Select j<; € B\ {9|€(9) = z*} uniformly at random /* sample PCS prefix for completion */ p B < B+ {y*} /* initialize buffer */
2: Sample a set of completions Y}, ~ P (§>i|f<i, ) 3: end if
3: Y « {[9<il|§>i]}g- ey, /* concatenate completions with the solution prefix */ 4: Y « SampleSolutions(x, Py, B)
4: return ¥ 5: for §in Y do
. . . 6: 2 <+ E(§) /* execute solution */
* |dentify partially-correct program prefixes i [irisCuma(C &) tth(epg) N
: if not isDuplicate(7, en
* Filtering solution prefixes B e B i seite
* PCSisonlysaved if it is not a prefix of any know PCS B 31;51 if
. _ena ior
* Learning objectives 13:[0 2% Vo L(x, B, Ps)

* With an auto-regressive generation model, the learning of
P(y<i|x) is independent of y-;, thus no change to the
learning objectives are required.

. Yale



— Experimental Setup @@ @@

* Datasets:

» MathQA-Python-Filtered: we do template-based deduplication is applied to
the original MathQA-Python dataset to better evaluation generalization

»GSM5.5K-Python: we automatically converted the natural language formulas
to program solutions in the same style as MathQA-Python

* Language model:
* We use GPT-Neo 125M and 2.7B as our main LM to study

* Evaluation metrics:

* We use pass@k following recent work in math reasoning and program
synthesis

Yale



Main Results

* Learning from self-sampled solutions improves pass@k

23
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Main Results

* Partially-correct solutions further improve model performance
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-

Ablation Studies and Analysis

A

* MLE-Aug loss function works the best

* It draws learning signal equally from all saved solutions

 MML works the worse, especially when also learning from PCSs

* Dynamics between # of PCSs and FCSs saved in the buffer
* More saved solutions typically results in better pass@k performance
* Large models are better at completing PCS prefixes to be FCS

40
35
30
25
20
15
10

25

323

22.7

27.3
23.7

Self-Sampling w/ FCS

MLE

MLE-Aug

22.7

Self-Sampling w/ FCS + PCS

MML

35.0

18.7

B-MML

27.9

GSM5.5K-Python with finetuned
GPT-Neo 125M model

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

# saved FCSs and PCSs per problem for GSM5.5K-Python (left)
and MathQA-Python-Filtered (right)

#FCS

#PCS 0.81
1.36

200 o 2.50
1.76 :

FCSonly FCS+PCS FCSonly  FCS+PCS
GPT-Neo 125M GPT-Neo 2.7B

1.00

0.50

0.00

#FCS

# PCS

143

FCS only

0.15

0.16

2.00 2.03
1.71

FCS+PCS  FCSonly  FCS+PCS

GPT-Neo 125M GPT-Neo 2.7B
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= Ablation Studies and Analysis @@@@

* Dynamics between # of PCSs and FCSs saved in the buffer
 Partially-correct solutions helps learning especially in early stages

= Not Executable == Lengthy FCS No rre Duplicate FCS
Duplicate PCS = New FCS or PCS
2.5 0.8
2 0.6
1.5
0.4

0.2
0.5

trainer/global_step e mmmnc===------L[2INEL/global -step-e

0 U
5k 10k 15k 20k 5k 10k 15k 20k
Growth of the number of saved Distribution of the characterization of self-
FCS and PCS during training sampled solutions during training

, Yale



\ Takeaways @ @ @@

* Learning from self-sampled solutions can be useful given the right
constraints

* E.g., when you can easily prune out incorrect and duplicated ones

* Programs are not either correct or wrong, they can be partially-
correct.

* Note that our definition of partial correctness is different from say, passing
60% of the test cases, because that program would still be wrong;

* Instead, by comparing execution traces, we identify the first 60% of the
program is on the right track

Yale



Paper Presentation 2:

LEVER: Learning to Verify Language-to-Code Generation with Execution
@@ N Meta Al
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Sida I. Wang*, Xi Victoria Lin*
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Task: Language-to-Code Generation

i

* Task: language-to-code generation using LLMs in few-shot learning
* Cornerstone for many tasks in NLP and ML

29

Complex What are the name and budget of the departments
question  With average instructor salary greater than the
overall average?

Complex SELECT T2.name, T2.budget
SQL FROM instructor as Tl JOIN department as
T2 ON Tl.department id = T2.id
GROUP BY Tl.department id
HAVING avg(Tl.salary) >
(SELECT avg(salary) FROM instructor)

Spider (Yu et al., 2018)

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning,
she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How
much was her revenue for the milk if each gallon costs $3.50?

Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning.

So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons.

She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons.

Thus, her total revenue for the milk is $3.50/gallon x 176 gallons = $<<3.50*176=616>>616.

Final Answer: 616

GSM8k (Cobbe et al., 2021)

Year
1896
1900
1904

2004
2008
2012

WikiTableQuestions (Pasupat and Liang., 2015)

Cit Count Nations .
¥ phud x = Greece held its last

Athens Greece 14

Summer Olympics in

Paris France 24

which year?

St.Louis USA 12

y = 2004

Athens Greece 201

Beijing China 204

London UK 204

Write a python function to check if a given number is
one less than twice its reverse. Your code should
satisfy these tests:

assert check(70) == False
assert check(23) == False
assert check(73) == True

def check(n) :
if n == 2*int(str(n)[::-1])-1:
return True
else:
return False

MBPP (Austin et al., 2021)

Yale



0,N Motivation @@ @@

* Task: natural language to code generation using large language models
without parameter updates (i.e., finetuning)

* Motivation:

 The CodelLMs are trained on surface code, how do we incorporate execution
semantics into the generation process?

* The cost for finetuning LLMs are huge, how do we improve them without changing
their parameters?

PR
-- Translate natural language
% £| question into SQL Query LMs
s
S 5 -- Example
v Xx
L 4 -- NL: What ...
SELECT ... @ | SELECT name FROM students
+ > a where age > 20 AND age < 30
— Greedy x
-- Example .
= 'é_ --NL: How many students in the Decodmg
= £|class are between 20 and 30
years old?
——

30
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Motivation

A

e Task: natural language to code generation using large language

models without parameter updates (i.e., finetuning)
* Observation:

 While CodelLMs struggles with precision in the few-shot setting, it often

produces the correct output when enough samples are drawn.

—

Few-shot
Exemplars

J

Task
Input

|

-- Translate natural
language question into

SQL Query

-- Example
-- NL: What ...
SELECT ...

+

-- Example

--NL: How many students
in the class are between
20 and 30 years old?

LMs

i

(I%og.\

1

(I%og.\

Sampliné

2

Prog.

SELECT name FROM students
where age > 20 AND age < 30 x

SELECT COUNT(name) FROM students

where age > 20 AND age < 30 V

SELECf'§tudent_num FROM students
where age_interval = “20-30” x

Yale



0,N Motivation @@ @@

* If we can not directly finetune the LLMs...

e Can we train a separate (relatively) small model as an “add-on”, to rerank the
programs samples from LLMs?

* Can we incorporate execution semantics in this model instead?

] r
o Ul el il @ _| SELECT name FROM students (" small )
5 2 language question into LLMs a where age > 20 AND age < 30 [ I x
2 8| sQL Query 4 I Model |
z £ ( I I
@ %| -- Example % | SELECT COUNT(name) FROM students |
== bLe B oo a where age > 20 AND age < 30 I
SELECT ... - | N \/
N— .
+ Sampling n
-- Example [mm———m—————mn
~ 5| __NL: cee i Execution
@ 2l NL: How many students w0 | SELECT student_num FROM students | :
~ £|in the class are between 2= here age_interval = “20-30” | Semantics
20 and 30 years old? D 0 x

., Yale



00 LEVER % : An Overview @ @ @@

* We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodelLMs), with the help of execution.

* LEVER has three main steps: 1) Generation

-- Translate ] =~~~

natural language LMs @ _ | SELECT name FROM students 1 9.35 :

question into SQL a where age > 20 AND age < 30 e :

Query | o

. rm===--

-~ Example @ | SELECT COUNT FROM students ! |

—~ NL: What ... g~ where age inggeiND ages<u33n i ) 0.27
[~

SELECT ... L :-_____-;

+ Sampling (] rTTTTS

( Task Input ] [ Few-shot Exemplars ]

&b SELECT COUNT(*) FROM students ; |

& o 1 9.13 |

-- Example & where age < 30 AND age > 20 ; |

--NL: How many | Lo
students in the e

class are between T F=="""3

20 and 30 years % _ | SELECT student_num FROM students | .11 \

old? a where age_interval = “20-30” ! ' \

1 1

. Yale



00 LEVER % : An Overview @ @ @@

* We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodelLMs), with the help of execution.

* LEVER has three main steps: 1) Generation; 2) Execution

.1 . FEE=====n |

6D SELECT name FROM students ! =

o - 9. ! Joh ..
a where age > 20 AND age < 30 1 0:35 éﬁ onm,
— ~-----"  Executor — —
r ] ] (o |

% | SELECT COUNT(name) FROM students | 0.97 ' PN

a where age > 20 AND age < 30 ; ' >_ K
——— e e e m N—
| :'"""; » |

. 1 =

w SELECT COUNT(*) FROM students . 9.13 ! Execute 2ol s

a where age < 30 AND age > 20 ] ' 2
——— e e m s N——
| :' """" |

§°x SELECT studel:lt_num FROM students | 9.11 S | Err: No
o where age_interval = “20-30” & column..
—— e e e e s N—
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00 LEVER % : An Overview @ @ @@

* We propose LEVER, which learns to verify language-to-code generation
by LLMs trained code (CodelLMs), with the help of execution.

* LEVER has three main steps: 1) Generation; 2) Execution; 3) Verification

r— (_ -------
= .o
2« | John, .. $3|0.15
-4 o 1
o e 1
— Verifier ——------
] —— T -
1
= . N 1
2|5 $35|0.85 |
-4 o 1
\ — - {_____/
S _ — —— T~ ---"1
= Verif . |
R erty 52|0.95
(] X > <
o with o
. — -
NL
] —— T -
= . =
3 « | ENr: No Code 38| 0.05
2 column.. e~
. ) N S,
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00 LEVER @2 : Detailed Formulation @@ @@

e Detailed formulation:

* We parameterize the verifier as a binary classifier, with the input as:
* natural language x; program sample ¥; and its execution result £())

PQ(UZI |ZE, ?;7 g(g))

* Given the input x and a program sample y € S, we obtain the reranking
probability as the joint probability of generation and passing verification:

PR(Q) v:1|CE) — PLM(?)|CE) ) PQ(’U=1|CB7 3},5(?)))

* We further aggregate the reranking probability of the programs in the samples
that executes to the same result, and obtains the final score

R(CE, ?;l) = PR(S(CQ), v=1|x) = Z PR(y7 v=1|x)
. yES,E(y)=E(9) Yale
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Final Score

Detailed Formulat

LEVER @2

)
p
o)
O
7))
©
.n
[
)
i -
)
0]
- A,
G o >
L ol &= E < - %
o s = ss|z|s
o ¢ S >
o
T < ——=—=-L_—,
- =] 0 | | o
© o | = c
o - I _ =
- c £ | P
T— & S | LN ) ! i w
> ” |
4 1 || = € | A
bk ynsay |(I| 3nsay unsay || | unsay
(D)} | E—— = — =
S ESIE
s
n 3 _ m
Q g AN L
- L
]
m “||_.||||||||| - HMl.l -z n|||||||"||.||||||| z n|||"|||.| g n|||||||._|m
“ 1 LN 1 N 1 m 1 i 1
(7)) — | m 1 N 1 - 1 - 11
1 N 1 N 1 N 1 N 11
e 1 (ay] 1 (W) 1 o 1 (av] _“
._wu L | | 1
@)
Q
x
Q
)
O
-
]
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e Detailed formulation:

* We further aggregate the reranking probability of the programs in the samples

37



00 Learning of LEVER @2 @@ @@

* Training data creation - for each input x:
* Sample program candidates on the training set examples y;~P; p (y]x)
* Execute the programs to obtain their execution results z; = E(¥;)
* Use gold exec. result or test cases to automatically label their correctness v;
 We created a set of training examples {x, ¥;, Z;, v; } 1= for each input x

* Learning objective:
* Negative log-likelihood, normalized by the number of program candidates

1 A A
Le(xa S) — _E ) Z long(vi|a:,yz-,zi)

U; €S

; Yale



Experimental Setup @ @ @@

* Datasets:
saL {>Spider (Yu et al., 2018): text-to-SQL semantic parsing; s win average nancior saary reatr inan e

overall average?

»WikiTQ (Pasupat et al., 2015): table question answering gompiex seiser 2. nane, 52 puase

FROM instructor as Tl JOIN department as

ovih {>GSM8k (Cobbe et al., 2021): math word problems crove BY 71 departnent 14
y On o R . HAVING avg (Tl.salary) >
»MBPP (Austin et al., 2021): basic python programming (SELECT avg (sslazy) FROM instmucton

Spider

Write a python function to check if a given number is
one less than twice its reverse. Your code should

Ve City Country Nations . Problem: Beth bakes : 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does -5'_ satisfy these tests:
x = Greece held its last each person consume? =
1896 Athens Greece 14 % . Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies : o :
Summer Olympics in There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies : 5_ assert check(70) == False
1900  Paris France 24 . She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies ¢ : e
. which year? Final Anewor: 6 - assert check(23) == False
1904  St.Louis USA 12 { | assert check(73) == True
y = 2004 Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning, e
she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How o
2004 Athens  Greece 201 much was her revenue for the milk if each gallon costs $3.50? i | defcheck(n):
2008 Beijing China 204 Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning. — ifn== 2*int(str(n)["—1])—1 .
So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons. H % : - :
2012 London UK 204 She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons. e return True
Thus, her total revenue for the milk is $3.50/gallon x 176 gallons = $<<3.50*176=616>>616. E else:
Final Answer: 616
return False

GSM8k MBPP

. Yale
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00 Experimental Setup @ @ @@

e Datasets: 4 language-to-code benchmarks from different domains

e CodelLMs:

* Codex-davinci-002: best CodelLM available, accessible through API
* InCoder-6B: open-source
* CodeGen-16B: open-source

e Evaluation metric
* Execution Accuracy (i.e., pass@1)

* Baselines:

Greedy: choose most likely token per decoding step

Maximum Likelihood (ML): choose the program with highest generation prob.
Error Pruning + ML (EP+ML): first prune out the programs with execution error
EP + Voting: majority vote of the error-free execution results

. Yale
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Codex + LEVER vs. Previous SoTA Methods

i

* Codex + LEVER achieves new SoTA results on all 4 benchmarks
* |t outperforms all previous finetuning and few-shot learning results

Methods Dev
Previous Work without Finetuning

Rajkumar et al. (2022) 67.0

MBR-Exec (Shi et al., 2022) 75.2

Coder-Reviewer (Zhang et al., 2022) 74.5

Previous Work with Finetuning

T5-3B (Xie et al., 2022) 71.8
PICARD (Scholak et al., 2021) 75.5
RASAT (Qi et al., 2022) 80.5
This Work with code-davinci-002
Greedy 75.3
EP + ML 77.3
LEVER®” 819,01
Spider
41

Methods Dev Test Methods Dev Test
Previous Work without Finetuning Previous Work without Finetuning
Codex QA™ (Cheng et al., 2022) 50.5 48.7 PAL (Gao et al., 2022) - 72.0
Codex SQL (Cheng et al., 2022) 60.2 61.1 Codex + SCT (Wang et al., 2022) - 78.0
Codex Binder (Cheng et al., 2022)  65.0 64.6 PoT-SC (Chen et al., 2022b) - 80.0
Previous Work with Finetuning Previous Work with Finetunin
* (T 8
?afC’Ei( (zLﬁu ot ala{i 2%2 2‘1)-‘1‘ 2?-; Neo-2.7B + SS (Ni et al., 2022) 20.7 19.5
dCuibe(Zhonctal;2029) : : Neo-1.3B + SC (Welleck et al., 2022) - 24.2
) 633 DiVeRSe* ! (Li et al., 2022b) . 832
Thi j -davinci-002
Greedy his Work with code davz:; 16 530 This Work with codex-davinci-002
EP + ML 52.7 54.9 e o o2
LEVER®”® 64.6102 65.840. : g §
- ke LEVERQ 84.1i0,2 84.5i0,3
WikiTQ GSMSkK
Methods Dev Test
Previous Work without Finetuning
MBR-Exec (Shi et al., 2022) - 63.0
Reviewer (Zhang et al., 2022) - 66.9
This Work with codex-davinci-002
Greedy 61.1 62.0
EP + ML 62.2 60.2
LEVER®> 754107 689104
MBPP

Yale



m Main Ablation on Codex | :@

e Execution information are crucial to the performance improvement

RGreedy EML REP+ML [[EP+Voting MLEVER mLEVER w/ogold prog. | m LEVER w/o exec. info | = LEVER w/o exec. agg. ---- Oracle
98.4
100.0

90.0

80.0

84.1 84.1 g5 g
64.8 65.0

. 78.2
. 76.1 750
611 61.1 ¢ 62.2
49.6 505 ! S E

. Yale
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Main Ablation on Codex

* Exec. agg. works well for Python but not SQL generation datasets

43

Execution Accuracy (%)

100.0

90.0

80.0

70.0

60.0

50.0

40.0

MGreedy EML REP+ML [[LEP+Voting MLEVER mLEVERw/ogoldprog. mLEVER w/o exec. info

82.0 81.7

8
. ||7’.|

1

64.8 65.0

49.6 50.3

WikiTQ

<isllil

1

84.1 84.1 g5 g

GSM8k

78.2

m LEVER w/o exec. agil ---- Oracle

76.1 359

70.5
I I I |

~N
=
[

@

61.1 61.1 62.2

MRNNRNNNRNNY

MBPP
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m Main Ablation on Codex | *@

44

LEVER works well with weakly-supervised setting, where gold
programs are not provided for learning

MGreedy EML REP+ML [£EP+Voting MLEVER |mLEVER w/ogold prog.| mLEVER w/o exec.info m LEVER w/o exec. agg. ---- Oracle
98.4
100.0

90.0

84.1 84.1
82.0 81.7 82.9

81.2
79.0 - 78.2
_ , 76.1 750
........................................ . . 70.5
’ e 7 68.2
: N e
52.7 53.4 N B :
505 o .0 B :
49§ E e B s

WikiTq GSM8' MBP

80.0

~N
=
[

70.0

60.0

Execution Accuracy (%)

50.0

MRNNRNNNRNNY

40.0
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00 Results on Open-Source CodeLMs @@@@

* Even larger improvements (e.g., up to Methods S T Sere S
30.0%) are observed for InCoder and Previous work:
MBR-EXEC 38.2 - 30.6
CodeGen models; Reviewer 415 . 31.7
Baselines:
* Similar findings for ablation study e w1 s s o6
. . . EP + ML 41.2 4.4 37.7 114
* With the exception that voting & exec. agg. EP+Voting 374 5.9 371 142
methods decreases the performance LEVER® 541 119 5.0 221
— gold prog. 534 - 52.3 -
— exec, info 48.5 5.6 43,0 13.4
— exec. agg. 54.7 10.6 51.6 18.3
Oracle 71.6 48.0 68.6 61.4

N Yale
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Analysis: Data Scaling

LAY

* LEVER works better under few-resource settings than generative

46

finetuning

—o—Codex + LEVER
--0--T5-small generation

T5-3B generation

—&—InCoder-6B + LEVER CodeGen-16B + LEVER

--0--T5-base generation  --o--T5-large generation

90
¢ ¢ —- * ..‘...80
70
CL DN
~~~~~~~~~~~ 60
- L — N
--------- e e 50
i T - o
e LTSS N S LSS e 8z ..40
=——— " N
~~~~~~~~ T 30
~‘"‘G--~ ol ~o
~~~~~~ o o 20
~~~~~ ° 10
0
6400 3200 1600 800 400 Few-shot (8)

Verification vs.

# Training Examples

Generation w/ decreasing training data

Execution Accuracy (%)
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00 Analysis: Data Scaling @@@@

* LEVER is sensitive to the sample size at inference time but not training

time thus a higher sampling budget should be applied during
inference

ML+EP Oracle —e— LEVER Greedy ML+EP oo Oracle —— LEVER Greedy
Spider wTQ GSM Spider WTQ GSM
95 75 eI 100
95 75 W00 m———————————— | | TR T pesssevsessesesesusseysensis
= 70 o5 | . s\igo 70 95
&% »” o) 90
> 90 o 65 —h————4
g 55 : 385
a 85 / o &) 60 85 A o —h
< 60 - —i
&80 g 80 080 55 %0
B 55 3 75
§ S %75 50
w75 50 o 3 20
0 25 SH 0 25 50 0 50 100 5 15 25 0 25 >0 0 25 50
Sample Size Sample Size
Ablation on sample size at inference time Ablation on sample size at training time

; Yale



0N

Analysis: Between-LM Transfer

A

* LEVER still non-trivially improves the baseline performance in most cases;

* Transfer typically works better when the percentage of positive labels are closer

Target CodeLM Source CodeLM
& (% Positive Labels)
ML+EP Codex InCoder CodeGen
Baseline (64.0%) (9.2%) (8.6%)
Codex 77.3 82.0 (+4.7) 81.7 (+4.4) 80.8 (+3.5)
InCoder 41.2 | 464 (+5.2) 54.1(+12.9) 47.6 (+6.4)
CodeGen  37.7 447 (+7.0) 489 (+11.2) 51.0(+13.3)

Between-LM Transfer results for Spider

48

Target CodeLM Source CodeLM
& (% Positive Labels)
ML+EP Codex InCoder CodeGen
Baseline (53.4%) (2.3%) (5.0%)
Codex 2.1 83.7 (+11.6) 70.0 (-2.1) 71.9 (-0.2)
InCoder 4.3 8.3 (+4.0) 11.9 (+7.6) 12.3 (+8.0)
CodeGen 9.6 18.4 (+8.8) 20.7 (+11.1) |

Between-LM Transfer results for GSM8k

Yale



00 Quantitative Error Analysis (NS

e When LEVER succeeds:

* It is often because the execution results provide crucial information such as execution errors,
variable type and range

e When LEVER fails:

* The most common reason is that no correct program can be found in the samples (i.e.,
upper-bound is reached), which is especially the case for weaker CodeLMs

Exec. Err. in Greedy Prog.  m Different Exec. Result Type Different Exec. Result Range Others  Correct Greedy Prog. No Correct Prog. in Sample Exec. Err. in Rerank Program
100% m Same Exec. Result Type and Range = Others

100%
80%
l 80% m = =
o B =- b
60%
40% I I 40%

20% 20%
o% || o% . - — i . == -
Spider+  Spider+  Spider+ WikiTQ+ GSM8k+ GSM8k+ GSM8k+ MBPP+ Spider+  Spider+  Spider+ WikiTQ+ GSM8k+ GSM8k+ GSM8k+ MBPP +
Codex InCoder  CodeGen Codex Codex InCoder  CodeGen Codex Codex InCoder  CodeGen Codex Codex InCoder  CodeGen Codex
When LEVER reranks a correct program at the top but When LEVER fails to rank a correct program at the top.

the greedy decoding fails.

. Yale



O Takeaways @ @ @@

* How can we use a smaller model to help improve LLMs?

* One way is to train a separate model that operates on the output of LLMs,
such as verification, reranking, etc.

* We can also try to incorporate additional information (e.g., execution)
in the separate model with the blackbox LLMs

* Neural-symbolic-neural approach is possible!

., Yale
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