CPSC 488/588, Fall 2023 Al Foundation Models

Lecture 25: Foundation Models for Code and Math

Ansong Ni
Yale University

Dec 5, 2023

- Quick Poll
 - GitHub Copilot
 - OpenAl ChatGPT

How to automatically write programs is one of the *oldest* and *hardest* problems in AI and CS:

This process of constructing instruction tables should be very fascinating. There need be no real danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned over to the machine itself.

— Alan Turing (1945)

Programming D. Gries Editor

Toward Automatic Program
Synthesis

D. Gries Editor

Zohar Manna
Stanford University,* Stanford, California and Richard J. Waldinger Stanford Research Institute,† Menlo Park, California

- They relate to several important areas in CS
 - Programming Languages (PL)
 - Software Engineering (SE)
 - Machine Learning (ML)
 - Natural Language Processing (NLP)
 - Human-Computer Interaction (HCI)

• ...

- Coding and doing math are great **testbeds for** *intelligence*:
 - language understanding
 - symbolic reasoning
 - planning & search
 - interactive learning

•

They empower many real-world applications:

Database Query and Visualization

Before we start...

Preliminaries

- Assume basic knowledge on terms in NLP and related to LLMs
 - E.g., BERT, GPT, prompting, autoregressive, retrieval, etc
- Mixing of terms
 - Foundation Models ≈ LM ≈ LLM
 - Code LM/LLM: Language models that have seen code during training
- Code and math LMs
 - They are deeply connected as
 - Both are formal languages;
 - Both require symbolic reasoning
 - This lecture mostly focuses on code LMs but many methods apply for math LMs as well

Outline

- A brief history of code and math LLMs
- Data collection, filtering and tokenization
- Training of code LLMs
 - Decoder-only models and code infilling
 - Encoder-only models;
 - Encoder-decoder models;
 - Reinforcement Learning
- Post-training methods for code LLMs
 - Neuro-symbolic approaches
 - Prompting methods for code
 - Retrieval-augmented generation for code

A Brief History of LMs for Code & Math

Key Events (2020-2021)

- Feb 2020: CodeBERT [1]
 - First attempt -- 16 months after original BERT paper
 - 125M parameters

- May 2020: GPT-3 [2] paper is out
 - People find that GPT-3 has some coding abilities
 - Though it is not specifically trained on code

- Jun 2021: GitHub Copilot is released
 - Revolutionary performance
 - Multi-line, whole function completion for the first time

- Jul 2021: Codex [3] paper is out
 - First 10B+ model trained specifically for code
 - Hero behind GitHub Copilot

^[1] Feng et al. (2020), "CodeBERT: A Pre-Trained Model for Programming and Natural Languages."

^[2] Brown et al. (2020), "Language Models are Few-Shot Learners."

^[3] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."

Key Events (2022)

- Feb 2022: AlphaCode [1] paper is out
 - Claims 54.3% rankings in competitions with human participants
 - Up to 41B, model not released nor publicly accessible

- Mar 2022: CodeGen [2] is released
 - Open-source 10B+ code LM
 - Later found that the model is severely under-trained (later CodeGen2)

- Apr 2022: PaLM [3] paper is out
 - PaLM-Coder is a 540B code model
 - The models are also severely under-trained (later PaLM-2)

- Jun 2022: Minerva [4] paper is out
 - Finetuned PaLM for math reasoning, up to 540B

- Nov 2022: The Stack [5] data is released
 - 3TB of permissively licensed code data
 - Foundational data work for many code LMs in the future
 - [1] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."
 - [2] Nijkamp et al. (2022), "CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis."
 - [3] Chowdhery et al. (2022), "PaLM: Scaling Language Modeling with Pathways."
 - [4] Lewkowycz et al. (2022), "Solving Quantitative Reasoning Problems with Language Models."
 - [5] Kocetkov et al. (2022), "The Stack: 3 TB of permissively licensed source code."

Key Events (2023)

- Feb 2023: LLaMA [1] is released
 - Trained with more data (1T tokens)
 - Not as large but more performant than larger models

- Mar 2023: GPT-4 [2] technical report is out
 - State-of-the-art in every aspect, coding included

- May 2023: StarCoder [3] is released
 - SoTA in open-source, matches Codex-12B in performance
 - Trained on the Stack

- Aug 2023: CodeLLaMA [4] is released
 - Shortly after the release of LLaMA 2 in Jul 2023
 - Continued training of LLaMA 2 on code
- Oct 2023: Llemma [5] is released
 - Open math model trained on Proof-Pile-2 by continued training of CodeLLaMA
 - [1] Touvron et al. (2023), "LLaMA: Open and Efficient Foundation Language Models."
 - [2] OpenAI. (2022), "GPT-4 Technical Report."
 - [3] BigCode. (2022), "StarCoder: May the source be with you!"
 - [4] Rozière et al. (2023), "Code Llama: Open Foundation Models for Code."
- [5] Azerbayev et al. (2023), "Llemma: An Open Language Model For Mathematics."

Data Collection, Filtering and Tokenization

Code Data Collection and Filtering

Data Sources:

- Mostly GitHub and similar platforms;
- Quality Filtering (take [1] as an example):
 - GitHub stars >= 5
 - 1% <= Comment-to-code ratio <= 80%

• License:

- Only permissive licensed open-source repo may be used;
- E.g., MIT, Apache 2.0

Deduplication and De-contamination

Deduplication:

- Remove (near-)duplicated files from the training data;
- Why: repeated training data can significantly hurt the performance [1]

Decontamination:

- Remove the files that contain solutions to benchmarks used for evaluation;
- Why: better measure generalization ability of trained LMs

Methods:

- Exact match
- Near-deduplication

Model	Dataset Deduplication Method
InCoder Fried et al. (2022) CodeGen (Nijkamp et al., 2022) AlphaCode (Li et al., 2022) PolyCoder (Xu et al., 2022a) PaLM Coder (Chowdhery et al., 2022)	Exact Match (alphanumeric token sequence) Exact Match (sha-256) Exact Match (non-whitespace text) Exact Match (hash) Near-deduplication (Levenshtein distance)
CodeParrot (Tunstall et al., 2022) Codex (Chen et al., 2021)	Near-deduplication (MinHash) Exact Match ("unique python files")

Table 4: Various deduplication methods adopted for different model training data.

^[1] Hernandez et al. (2023), "Scaling laws and interpretability of learning from repeated data."

Tokenization for Code LM (1)

Recall from Lecture 3

• Tokenization is a *big deal* for coding task

Tokenization for Code LM (2)

- Tokenization is a big deal for coding task
- Code looks very similar but also very different than natural language:
 - Similar: semantic meaning of variable/function/class names
 - E.g., "is_correct", "AttentionLayer", "compute_perplexity"
 - **Different:** Whitespace characters, punctuation, indentations
 - E.g., "df.shape[1]", "def f(x):\n\tif x>0:\n\t\treturn x\n\telse:\n\t\treturn x+1"
- Trade-off between:
 - Vocabulary size
 - # tokens needed to encode the same sequence
 - Generalization ability for different tasks

Tokenization for Code LM (3)

Trade-off between:

- Vocabulary size
- # tokens needed to encode the same sequence
- Generalization ability for different tasks → downstream performance

Lev.	Description	Example		
0	Whitespaces in the middle of tokens are prohibited and each punctuation char is treated as a separate token (except '_')	['for', 'i', 'in', 'range', '(', 'df', '.', 'shape', '[', '1', ']', ')', ':', 'NEW_LINE', 'INDENT', 'print', '(', 'i', ')', 'NEW_LINE', 'print', '(', 'df', '.', 'columns', '[', 'i', ']', ')']		
1	Similar to Level 0, but tokens consisting of several punctuation chars are allowed	<pre>['for', 'i', 'in', 'range', '(', 'df', '.', 'shape', '[', '1', ']):', 'NEW'LINE INDENT', 'print', '(', 'i', ') NEW'LINE', 'print', '(', 'df', '.', 'columns', '[', 'i', '])']</pre>		
2	Similar to Level 1, but dots are allowed in tokens	['for', 'i', 'in', 'range', '(', 'df', '.shape', '[', '1', ']):', 'NEW'LINE INDENT', 'print', '(', 'i', ') NEW'LINE', 'print', '(', 'df', '.columns', '[', 'i', '])']		
3	Whitespaces and single punctuation chars allowed in tokens, except NEW_LINE	['for i in range', '(df', '.shape [1', ']):', 'NEW'LINE INDENT', 'print', '(i', ') NEW'LINE', 'print', '(df', '.column', 's [i', '])']		
4	Composite tokens of arbitrary complexity are allowed	['for i in range', '(df', '. shape', '[1]', ')', ': NEW'LINE', 'INDENT print', '(i)', 'NEW'LINE print', '(df', '. columns', '[i])']		

Training of Code LLMs

Decoder-only (GPT) Models

- Model architecture and pretraining objectives:
 - Mostly follow those of general-purpose LLMs, e.g., Codex follows the GPT-3
- Multi-stage training:
 - Some models are based off a general-purpose LM
 - E.g., [1] CodeGen-NL→CodeGen-Multi→CodeGen-Mono
 - E.g., [2] LLaMA→CodeLLaMA

Figure 2: The Code Llama specialization pipeline. The different stages of fine-tuning annotated with the number of tokens seen during training. Infilling-capable models are marked with the \rightleftharpoons symbol.

Code Infilling: Fill in the middle

- Infilling task:
 - <pr
- Trained via data augmentation [1]:
 - Preprocessing:
 - Special tokens <IF>
 - <prefix>, <middle>, <suffix>
 - <prefix>,<IF>, <suffix>,<IF>, <middle>
 - Mixing with original data
 - Training with normal autoregressive objectives

Docstring Generation

A use case of infilling [2]

Encoder (BERT) Models for Code (1)

- Aka code representation learning
- Code is multi-modal and it's usually automatic to obtain other modalities
- Other modalities of code may better capture the semantics of code

Figure 2: Multiple views of source code.

Encoder (BERT) Models for Code (2)

- Code is multi-modal
 - Natural language;
 - Surface form;
 - Control flow graph;
 - Abstract-syntax-tree (AST);
 - Data flow graph;
 - Dependency graph;
 - Compiled machine code;
 - ...

Using Data Flow Graph

• General idea: jointly encode other modalities with surface form

Encoder-Decoder (BART/T5) Models for Code

- A mixture of classification and generation tasks for code are typically used during pretraining
 - Researchers get very creative in proposing new pretraining tasks
- E.g., CodeT5 [1]

Reinforcement Learning (1)

- Code generation is a natural task to apply RL as we can automatically obtain feedback from computers:
 - Pass/fail a parser;
 - Pass/fail compilation;
 - With/without runtime error;
 - Pass/fail test cases

```
r(W^s) = \begin{cases} -1.0 & \text{, if } W^s \text{ cannot be compiled (i.e. compile error)} \\ -0.6 & \text{, if } W^s \text{ cannot be executed with unit tests (i.e. runtime error)} \\ -0.3 & \text{, if } W^s \text{ failed any unit test} \\ +1.0 & \text{, if } W^s \text{ passed all unit tests} \end{cases}
\text{Rewards used for CodeRL}
```

Examples:

- CodeRL [1] (offline actor-critic)
- RLTF [2] (online w/ feedback from compiler)

Reinforcement Learning (2)

- Benefits of using RL:
 - Not limit to learning from a single solution from the dataset;
 - Release the dependency for annotated solutions;
 - Able to directly incorporate preferences;
- Limitations:
 - Insufficient test cases may lead to false positives [1]
 - Rewards are typically sparse and underspecified [2];
 - Especially if we start with a weaker model

Post-Training Methods for Code LLMs

Neuro-Symbolic Approaches (1): Incorporating Code Execution

- In addition to providing RL learning signal at training time
- Execution information can also help improve models at test time
- Methods:
 - Sampling + filtering (codex [1])
 - Sampling solutions then filter out those fail to pass a small subset of test cases

	Introductory	Interview	COMPETITION
GPT-NEO 2.7B RAW PASS@1	3.90%	0.57%	0.00%
GPT-NEO 2.7B RAW PASS@5	5.50%	0.80%	0.00%
1-SHOT CODEX RAW PASS@1	4.14% (4.33%)	0.14% (0.30%)	0.02% (0.03%)
1-SHOT CODEX RAW PASS@5	9.65% (10.05%)	0.51% (1.02%)	0.09% (0.16%)
1-SHOT CODEX RAW PASS@100	20.20% (21.57%)	2.04% (3.99%)	1.05% (1.73%)
1-SHOT CODEX RAW PASS@1000	25.02% (27.77%)	3.70% (7.94%)	3.23% (5.85%)
1-SHOT CODEX FILTERED PASS@1	22.78% (25.10%)	2.64% (5.78%)	3.04% (5.25%)
1-SHOT CODEX FILTERED PASS@5	24.52% (27.15%)	3.23% (7.13%)	3.08% (5.53%)

Codex-12B on APPs. Filtered Pass@k is significantly better

Neuro-Symbolic Approaches (1): Incorporating Code Execution

• Methods:

- Sampling + filtering (codex [1])
- Sampling + filtering + clustering (AlphaCode [2])
 - Sampling lots of diversified program candidates (i.e., up to 1M)
 - Filtering using open test cases
 - Diversify the picked candidates by clustering and selecting from different clusters

- [1] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."
- [2] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."

Neuro-Symbolic Approaches (1): Incorporating Code Execution

• Methods:

- Sampling + filtering (codex [1])
- Sampling + filtering + clustering (AlphaCode [2])
- Sampling + verification + voting (LEVER [3])
 - Train a verifier to verify the program with its execution results
 - Aggregate the probability from programs that reach the same execution results

- [1] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."
- [2] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."
- [3] Ni et al. (2023), "LEVER: Learning to Verify Language-to-Code Generation using Execution."

Neuro-Symbolic Approaches (2): Constraint Decoding

- How does code completion work before LLMs?
 - Remember: programs are in *formal languages*, which means that they are regulated by **strict grammar**;
 - Completion Engine (CE): tells you the valid next tokens w/ static analysis

- Sounds a lot like a language model, right?
- But it is a *symbolic* process
- Combining LM with CE [1]:
 - Filter out next token from the LM that are not approved by CE
 - Best of both worlds!

Neuro-Symbolic Approaches (3): Planning and Search

- Programs are compositional by design
 - Human programmers typically decompose the problem into smaller parts and write functions to solve each of them → Planning + Implementation
 - Given the components (e.g., individual functions), we can use a solver to find out if they are sufficient in completing the task → Search
- Example 1: Parsel [1]

Neuro-Symbolic Approaches (3): Planning and Search

- Programs are compositional by design
 - Human programmers typically decompose the problem into smaller parts and write functions to solve each of them → Planning + Implementation
 - Given the components (e.g., individual functions), we can use a solver to find out if they are sufficient in completing the task → Search
- Example 2: **SatLM** [1]

Prompting Methods using Code for LLMs

- Chain-of-thought (CoT) prompting [1]
 - Explicitly write the reasoning process as natural language
- Program-of-thought (PoT) prompting [2] and Program-aided LM (PAL) [3]
 - Explicitly write the reasoning process as a program
 - Use program execution to obtain the final answer
- Works well with math and other symbolic reasoning tasks
- Also closely related to tool-use of LLMs

[3] Gao et al. (2022), "PAL: Program-aided Language Models."

Program-aided Language models (this work)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis_balls = 5

2 cans of 3 tennis balls each is
bought_balls = 2 * 3

tennis balls. The answer is
answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

```
Model Output

A: The bakers started with 200 loaves
loaves_baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves_sold_morning = 93
loaves_sold_afternoon = 39
The grocery store returned 6 loaves.
loaves_returned = 6
The answer is
answer = loaves_baked - loaves_sold_morning
- loaves_sold_afternoon + loaves_returned

>>> print(answer)
74
```

^[2] Chen et al. (2022), "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks."

^[1] Wei et al. (2022), "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models."

Retrieval Augmented Generation for Code

- Retrieval-augmented generation (RAG)
 - Retrieves relevant pieces of information from some knowledge base and include them in the prompt
- When programmers code, we look at:
 - Current file (e.g., defined variables, function, classes)
 - Documentation of external libraries ← "DocPrompting" [1]
 - Definitions of imported functions and classes ← "Repo-level Prompt Generator" [2]
 - Github, StackOverflow, geeksforgeeks... ← "REDCODER" [3]
- We should give such information to the LLMs as well!

^[1] Zhou et al. (2022), "DocPrompting: Generating Code by Retrieving the Docs."

^[2] Shrivastava et al. (2023), "Repository-Level Prompt Generation for Large Language Models of Code."

^[3] Parvez et al. (2021), "Retrieval Augmented Code Generation and Summarization."

Summary

- A brief history of code and math LLMs
- Data collection, filtering and tokenization
- Training of code LLMs
 - Decoder-only models and code infilling
 - Encoder-only models;
 - Encoder-decoder models;
 - Reinforcement Learning
- Post-training methods for code LLMs
 - Neuro-symbolic approaches
 - Prompting methods for code
 - Retrieval-augmented generation for code

More Topics I hoped to cover...

Interdisciplinary applications

- Code as Policies: Language Model Programs for Embodied Control (2023)
- Large Language Models for Compiler Optimization (2023)

Self-Improvement with code LLMs

- STaR: Bootstrapping Reasoning With Reasoning (2022)
- CodeT: Code Generation with Generated Tests (2022)
- Teaching Large Language Models to Self-Debug (2023)
- DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines (2023)

More ways to learn a code LLM

- Show Your Work: Scratchpads for Intermediate Computation with Language Models (2021)
- Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions (2022)

Hope you enjoyed the lecture!

Questions?

