CPSC 488/588, Fall 2023
Al Foundation Models

Lecture 25:
Foundation Models for Code and Math

Ansong Ni

Yale University

Dec 5, 2023

Yale



Why Build Foundation Models for Code and Math

* Quick Poll
e GitHub Copilot
* OpenAl ChatGPT

Yale



Why Build Foundation Models for Code and Math

* How to automatically write programs is one of the oldest and hardest
problems in Al and CS:

This process of constructing instruction tables should be very fascinating. There need be no real
danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned

over to the machine itself. — Alan Turing (1945)
Programming D. Gries
Languages Editor
Toward AutO‘ g%:l?grlc\id%lrrlli%ersity,* Stanford, California

. an
matic Program  &awoaie.,

* enlo Park, California

Synthesis |

: Yale



Why Build Foundation Models for Code and Math

* They relate to several important areas in CS
* Programming Languages (PL)
» Software Engineering (SE)

Machine Learning (ML)

Natural Language Processing (NLP)
Human-Computer Interaction (HCI) ’A
i)
&P

(- %

: Yale




Why Build Foundation Models for Code and Math

* Coding and doing math are great testbeds for intelligence:
* language understanding

symbolic reasoning

planning & search

interactive learning

Code & Math

|
I I I I I
language symbolic planning & interactive
understanding reasoning search learning

; Yale




Why Build Foundation Models for Code and Math

* They empower many real-world applications:

ab, [E Merge v  General

Akkiraju, Ravali

Aksenova, Evelyn
Alexopoulos, Alexia
Allu, Deevena
Anderson, Kaari
Andreas, Katerina
Ankitham, Baaj
Aunina, Kitija

Type a few examples

Banis, Irini

Baric, Elvis
Batard, Alexandre
Berger, Dominic
Berger, Lena
Berger, Lucas

to show a clear pattern

Large
Language
Model

<+—--- Stack the blocks on the empty bowl.

APIs
Control APIs

FlashFil
l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stack)

def is_empty(name):

def stack_objects(obj_names):

n_objs = len(obj_names)

for i in range(n_objs - 1):
obj0 = obj_names[i + 1]
obj1 = obj_names[i]

(objo, obj1) Chas ok P e y

Let me know when you want to
know more — I'll be here.

Send me Esquire Wisdom daily

What time would you like me to
send your daily Esquire Wisdom?

8:30pm

Ok, Esquire will start sending
Esquire Wisdom every day at 8:30
PM.

rtual Assistants

S Wine Sales

Analysis complete ©

Search

Dimensions
® Country.
® County
stc Description
ste Desigration
© Province

sve Taster Narme:

sue Taster Twtter Handle

hoe Tite
e Variety
& Vintage
e Winery

leasures
 Number of Records

# Points
# Price

8 sentiment @ parse_expenses.py

import datetime

def parse_expenses(expenses_string):

"""Parse the list of expenses and return the list of triples (date, value, currency).
Ignore lines starting with #.
Parse the date using datetime.
Example expenses_string:
2016-01-02 -34.01 USD
2016-01-03 2.59 DKK
2016-01-03 -2.72 EUR
expenses = []
for line in expenses_string.splitlines():
if line.startswith("
continue
date, value, currency = line.split(" ")

# 10ax.online.tableau.com <

Refresh <

o € -

X
Try asking these questions:

ing

most expensive Price

top Country by sum of Number of Records
sum of Points

by Country

sum of Points by Country as a map
Country in US

sort Country in alphabet

Robotics Control

Feadback

Database Query and Visualization

LearnMore &

Yale


https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://github.com/features/copilot
https://code-as-policies.github.io/
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

Before we start...

Yale



Preliminaries

* Assume basic knowledge on terms in NLP and related to LLMs
* E.g., BERT, GPT, prompting, autoregressive, retrieval, etc

* Mixing of terms
* Foundation Models = LM = LLM
e Code LM/LLM: Language models that have seen code during training

 Code and math LMs

* They are deeply connected as
e Both are formal languages;
* Both require symbolic reasoning

* This lecture mostly focuses on code LMs but many methods apply for math
LMs as well

Yale



Outline

* A brief history of code and math LLMs
* Data collection, filtering and tokenization
* Training of code LLMs

* Decoder-only models and code infilling
* Encoder-only models;

* Encoder-decoder models;

e Reinforcement Learning

* Post-training methods for code LLMs
* Neuro-symbolic approaches
* Prompting methods for code
e Retrieval-augmented generation for code

Yale



A Brief History of LMs for Code & Math

Yale



Key Events (2020-2021)

* Feb 2020: CodeBERT [1]

* First attempt -- 16 months after original BERT paper
* 125M parameters

@  May 2020: GPT-3 [2] paper is out
* People find that GPT-3 has some coding abilities
e Though it is not specifically trained on code

Q= e Jun 2021: GitHub Copilot is released

e Revolutionary performance
* Multi-line, whole function completion for the first time

@ e Jul 2021: Codex [3] paper is out

* First 10B+ model trained specifically for code
e Hero behind GitHub Copilot

[1] Feng et al. (2020), “CodeBERT: A Pre-Trained Model for Programming and Natural Languages.”
[2] Brown et al. (2020), “Language Models are Few-Shot Learners.” Y 1

10 [3] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”



Key Events (2022)

Feb 2022: AlphaCode [1] paper is out
* Claims 54.3% rankings in competitions with human participants
* Up to 41B, model not released nor publicly accessible

Mar 2022: CodeGen [2] is released

e Open-source 10B+ code LM
* Later found that the model is severely under-trained (later CodeGen2)

Apr 2022: PaLM [3] paper is out
* PalLM-Coder is a 540B code model
* The models are also severely under-trained (later PaLM-2)

Jun 2022: Minerva [4] paper is out
* Finetuned PalLM for math reasoning, up to 540B

Nov 2022: The Stack [5] data is released

» 3TB of permissively licensed code data
* Foundational data work for many code LMs in the future

salesforce

J
<J
[1] Li et al. (2022), “Competition-Level Code Generation with AlphaCode.”

[2] Nijkamp et al. (2022), “CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.”
[3] Chowdhery et al. (2022), “PaLM: Scaling Language Modeling with Pathways.”

11 [4] Lewkowycz et al. (2022), “Solving Quantitative Reasoning Problems with Language Models.” SE al e
[5] Kocetkov et al. (2022), “The Stack: 3 TB of permissively licensed source code.”



S B9 3

Key Events (2023)

Feb 2023: LLaMA [1] is released

* Trained with more data (1T tokens)
* Not as large but more performant than larger models

Mar 2023: GPT-4 [2] technical report is out
» State-of-the-art in every aspect, coding included

May 2023: StarCoder [3] is released

* SoTA in open-source, matches Codex-12B in performance
* Trained on the Stack

Aug 2023: CodelLLaMA [4] is released
» Shortly after the release of LLaMA 2 in Jul 2023
* Continued training of LLaMA 2 on code

Oct 2023: Llemma [5] is released
* Open math model trained on Proof-Pile-2 by continued training of CodeLLaMA

[1] Touvron et al. (2023), “LLaMA: Open and Efficient Foundation Language Models.”
[2] OpenAl. (2022), “GPT-4 Technical Report.”
[3] BigCode. (2022), “StarCoder: May the source be with you!”
[4] Roziere et al. (2023), “Code Llama: Open Foundation Models for Code.”
12 [5] Azerbayev et al. (2023), “Llemma: An Open Language Model For Mathematics.” Yale



Data Collection, Filtering and
Tokenization

Yale



Code Data Collection and Filtering

* Data Sources:
* Mostly GitHub and similar platforms;

e Quality Filtering (take [1] as an example):
e GitHub stars >=5
* 1% <= Comment-to-code ratio <= 80%

e License:

* Only permissive licensed open-source repo may be used;
* E.g., MIT, Apache 2.0

14 [1] Ben Allal et al. (2023), “SantaCoder: Don’t Reach for the Stars!” S?ale



Deduplication and De-contamination

* Deduplication:
 Remove (near-)duplicated files from the training data;
* Why: repeated training data can significantly hurt the performance [1]

* Decontamination:
 Remove the files that contain solutions to benchmarks used for evaluation;
* Why: better measure generalization ability of trained LMs

° M et h (0] d S: Model Dataset Deduplication Method

InCoder Fried et al. (2022) Exact Match (alphanumeric token sequence)

* Exact match CodeGen (Nijkamp et al., 2022) Exact Match (sha-256)

. . AlphaCode (Li et al., 2022) Exact Match (non-whitespace text)

* Near-deduplication PolyCoder (Xu et al., 2022a) Exact Match (hash)
PalLM Coder (Chowdhery et al., 2022) Near-deduplication (Levenshtein distance)
CodeParrot (Tunstall et al., 2022) Near-deduplication (MinHash)
Codex (Chen et al., 2021) Exact Match ("unique python files”)

Table 4: Various deduplication methods adopted for different model training data.

- [1] Hernandez et al. (2023), “Scaling laws and interpretability of learning from repeated data.”
[2] Ben Allal et al. (2023), “SantaCoder: Don’t Reach for the Stars!” I a e



Tokenization for Code LM (1)

* Recall from Lecture 3

( | A
~>| Add & Norm |

| love Peperroni Pizza Feed
| Forward
v
A
tokenization N
* | ~{ Add & Norm }
| Multi-Head
: | v | Attention
nI u’ n _ ove u, "_Pep", upern’ nonin’ "_pizza" l
| Input — ]
v \_ J
Embe':it.img Positional D
matrix _ D
— Encoding |
d

V: Vocab size Sequence length

* Tokenization is a big deal for coding task

. Yale



Tokenization for Code LM (2)

* Tokenization is a big deal for coding task

* Code looks very similar but also very different than natural language:
 Similar: semantic meaning of variable/function/class names

n

* E.g., ”is_correct”, “AttentionLayer”, “compute_perplexity”
* Different: Whitespace characters, punctuation, indentations

e E.g., “df.shape[1]”, “def f(x):\n\tif x>0:\n\t\treturn x\n\telse:\n\t\treturn x+1”
* Trade-off between:
* Vocabulary size
* # tokens needed to encode the same sequence
* Generalization ability for different tasks

Yale



Tokenization for Code LM (3)

* Trade-off between:
* Vocabulary size
* # tokens needed to encode the same sequence
* Generalization ability for different tasks = downstream performance

Lev.| Description Example
0 Whitespaces in the middle of tokens are | [‘for’,‘i’,‘in’,‘range’,‘(’,‘df’,*.’, ‘shape’, ‘[’, ‘1%, ‘1", )",
prohibited and each punctuation char is | > NEW_LINE’, “INDENT’, ‘print’, *(’,"i’,")’, "NEW_LINE’,

Sz ‘print’,‘(’, ‘df,,‘.,, ‘COlumnS’,‘[’, ‘i,,‘],,‘),]

treated as a separate token (except
1 Similar to Level 0, but tokens consisting | [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’

of several punctuation chars are allowed 1) ¢, ‘'NEW'LINE INDENT’, ‘print’, * ¢, “i’, ) NEW'LINE’,
(prlnt” . (,, ‘df’, 5. ,, ‘colums), ‘. [,, (ly, 5] )’]

2 Similar to Level 1, but dots are allowed in | [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘shape’, ‘[, ‘1’, ‘] ) ",
tokans ‘NEW'LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW'LINE’,
‘print’, ‘ (’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘] )’]
3 Whitespaces and single punctuation chars | [‘foriin range’, ‘(df’, *. shape [ 1, ‘] ) :*, ‘NEW LINE INDENT”,
allowed in tokens, except NEW_LINE ‘print’, (1’, ) NEW'LINE’, ‘print’, ‘( df’, ‘. column’, ‘s [ {’,
VR 6: I’]
4 Composite tokens of arbitrary complexity | [‘for i in range’, ‘( df’, . shape’, ‘[ 1], *)’, ‘: NEW'LINE’,
are allowed ‘INDENT print’, ‘( i )’, ‘NEW'LINE print’, ‘(df’, ‘. columns’,
‘[i1)]

. [1] Chirkova and Troshin (2023), “CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Yale

Source Code.”



Training of Code LLMs

Yale



Decoder-only (GPT) Models

* Model architecture and pretraining objectives:
* Mostly follow those of general-purpose LLMs, e.g., Codex follows the GPT-3

* Multi-stage training:
* Some models are based off a general-purpose LM

* E.g., [1] CodeGen-NL->CodeGen-Multi->CodeGen-Mono
* E.g., [2] LLaMA—>CodelLLaMA

CopE LLAMA

fine-tuning

Long context (7B <2, 13B <2, 34B)
- Instruction
Lrama 2 Code training 20B i it CobE LraMA - INSTRUCT

Foundation models — Infilling code training = (7B =, 13B =, 34B)
(7B, 13B, 34B) 503 2

Python code Long context

et [t CopE LLAMA - PYTHON

(7B, 13B, 34B)

100B 20B

Figure 2: The Code Llama specialization pipeline. The different stages of fine-tuning annotated with
the number of tokens seen during training. Infilling-capable models are marked with the & symbol.

[1] Nijkamp et al. (2023), “CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.” Yale

20 [2] Roziere et al. (2023), “Code Llama: Open Foundation Models for Code.”



Code Infilling: Fill in the middle

* Infilling task:
* <prefix>, <suffix> = <middle>

* Trained via data augmentation [1]:

* Preprocessing:
* Special tokens
» <prefix>, <middle>, <suffix>
e <prefix>, , <suffix>, , <middle>
* Mixing with original data
* Training with normal autoregressive
objectives

21

Docstring Generation

def count_words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.
:return: A dictionary mapping words to the number of occurrences.
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word counts[word] += 1
else:
word_counts[word] = 1
return word_counts

[1] Bavarian et al. (2022), “Efficient Training of Language Models to Fill in the Middle.”
[2] Fried et al. (2022), “InCoder: A Generative Model for Code Infilling and Synthesis.”

A use case of infilling [2]

Yale




Encoder (BERT) Models for Code (1)

* Aka code representation learning

* Code is multi-modal and it’s usually automatic to obtain other
modalities

* Other modalities of code may better capture the semantics of code

———— e

| NL AST CrG |
| function_definition @ I
: def func ‘parameters block @ |
|| Sum all numbers in the set ( x ) (expression statement =7 :
. ' el | D CED ||
def Sum(x): A l v 0 & !
y=0 Multi-Viewsl L |
for i in x: —>I___________________________________________________________________________________________:
+= i - - - A
% retuin y | | Function and Variable Renaming Loop Exchange Dead Code Insertion I
| def sum(x): def sum(x): I
I'| def Func(var_1): y=20 y =0 |
| var_2 = 0 count_num = 0 for i in x: |
| for var_3 in var_1: while count_num < len(x): oy +=1 I
[ var_2 += var_3 y += x[count_num] [afT | |
| turn var_2 count_num 1 L____bass | |
| t y eturn y |

Figure 2: Multiple views of source code.

- [1] Wang et al. (2022), “CODE-MVP: Learning to Represent Source Code from Multiple Views with Contrastive Pre-Training.” Yale



Encoder (BERT) Models for Code (2)

* Code is multi-modal
* Natural language;

Surface form;

Control flow graph;

Data flow graph;
Dependency graph;
Compiled machine code;

Abstract-syntax-tree (AST);

Source code

def max(a,'b):
3 4
x=0
. 5 6
if b>a:3
7
x=b
else:
9 10
X=a
11
return’x

Comment
Return maximum value

Data Flow
1 2
/'a‘ l\)‘\
/' ye ys |
a b |
\ 10 8/ 3 4
»a b  x<0
Yo V7
X

\ 7/ ———
1
X' Value comes from

Masked Language Modeling
T T
[ (N O A O } f

R EREEEY

GraphCodeBERT

T T I B B SR NN R )
[CLS] Return [MASK] value  [SEP] .. x=0ifb> [MAsK]:x=belse.. [SEP] @ b x 0 b
ttr ot Pbott ottt to Lt
Return maximum value ..x=0ifb> a :x=b else ... abx 0b
Text Code Variable

Using Data Flow Graph

e General idea: jointly encode other modalities with surface form

- [1] Guo et al. (2021), “

GraphCodeBert: Pre-training Code Representations with Data FLow.”

data flow edge
prediction among
variables

IR

L2

Yale



Encoder-Decoder (BART/T5) Models for Code

* A mixture of classification and generation tasks for code are typically
used during pretraining

* Researchers get very creative in proposing new pretraining tasks

e E.g., CodeT5 [1]

Masked Input
# recursive binary search

(

Masked Input

# recursive
binarySearch(arr, left, right, x):
mid = (left +
arr = x:
mid

(MASK2 + MASK3) //
[ :

] ==

Output

binarySearch arr

Output
binary search right ) //

[ mid ] left right x mid

(c) Masked Identifier Prediction

(a) Masked Span Prediction

.

# recursive binary search

q } ] Bimodal Input
i # recursive binary search
binarySearch(arr, left, right, x):

5[010100100 !
i binarySearch (arr, left, right, x): [
mid = (left + right) //
arr[mid] == x:
mid

mid = (left + right) //
arr[mid] == x:
mid

arr [ mid ] == x : mid :

(b) Identifier Tagging

(d) Bimodal Dual Generation

» [1] Wang et al. (2021), “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Yale

Understanding and Generation.”



Reinforcement Learning (1)

* Code generation is a natural task to apply RL as we can automatically
obtain feedback from computers:
 Pass/fail a parser;
 Pass/fail compilation;

-1.0 ,if W?* cannot be compiled (i.e. compile error)
« With/without runtime error; sy — 06 i W cannot be executed with unit ests (i runtme error
. P fail ~]-03 ,if W* failed any unit test
aSS/ dal teSt Cases +1.0 ,1if W? passed all unit tests

° Examples: Rewards used for CodeRL

e CodeRL [1] (offline actor-critic)
* RLTF [2] (online w/ feedback from compiler)

. [1] Le et al. (2021), “CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning.”
[2] Liu et al. (2023), “RLTF: Reinforcement Learning from Unit Test Feedback.” I a e



Reinforcement Learning (2)

* Benefits of using RL:

* Not limit to learning from a single solution from the dataset;
* Release the dependency for annotated solutions;
* Able to directly incorporate preferences;

e Limitations:

26

* |Insufficient test cases may lead to false positives [1]

* Rewards are typically sparse and underspecified [2];
e Especially if we start with a weaker model

[1] Smith et al. (2015), “Is the Cure Worse Than the Disease? Overfitting in Automated Program Repair.”
[2] Agarwal et al. (2019), “Learning to Generalize from Sparse and Underspecified Rewards.”

Yale



Post-Training Methods for Code LLMs

Yale



Neuro-Symbolic Approaches (1): Incorporating Code Execution

* In addition to providing RL learning signal at training time
* Execution information can also help improve models at test time

* Methods:
e Sampling + filtering (codex [1])

28

* Sampling solutions then filter out those fail to pass a small subset of test cases

INTRODUCTORY INTERVIEW COMPETITION
GPT-NEO 2.7B RAW PASS@ 1 3.90% 0.57% 0.00%
GPT-NEO 2.7B RAW PASS@5 5.50% 0.80% 0.00%

1-SHOT CODEX RAW PASS@1
1-SHOT CODEX RAW PASS@5
1-SHOT CODEX RAW PASS @100
1-SHOT CODEX RAW PASS@ 1000

4.14% (4.33%)
9.65% (10.05%)
20.20% (21.57%)
25.02% (27.77%)

0.14% (0.30%)
0.51% (1.02%)
2.04% (3.99%)
3.70% (7.94%)

0.02% (0.03%)
0.09% (0.16%)
1.05% (1.73%)
3.23% (5.85%)

1-SHOT CODEX FILTERED PASS@ 1
1-SHOT CODEX FILTERED PASS@5

22.78% (25.10%)
24.52% (27.15%)

2.64% (5.78%)
3.23% (7.13%)

3.04% (5.25%)
3.08% (5.53%)

Codex-12B on APPs. Filtered Pass@k is significantly better

[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”

Yale



Neuro-Symbolic Approaches (1): Incorporating Code Execution

* Methods:
e Sampling + filtering (codex [1])
e Sampling + filtering + clustering (AlphaCode [2])
* Sampling lots of diversified program candidates (i.e., up to 1M)

* Filtering using open test cases
» Diversify the picked candidates by clustering and selecting from different clusters

10° 10! 10? 103 104 10° 106 0‘900 10! 102 10° 104 10° 10°
Sample budget Sample budget

(@) 10 attempts per problem (b) Unlimited attempts per problem

[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”

[2] Li et al. (2022), “Competition-Level Code Generation with AlophaCode.”
29

Yale



Neuro-Symbolic Approaches (1): Incorporating Code Execution

* Methods:
e Sampling + filtering (codex [1])
e Sampling + filtering + clustering (AlphaCode [2])

e Sampling + verification + voting (LEVER [3])
* Train a verifier to verify the program with its execution results
* Aggregate the probability from programs that reach the same execution results

Generation Prob.

AN e N

-- Translate natural . 1 i i | ' :
) SELECT name FROM students i i 3 i | i

language question where age > 20 AND age < 30 50.35 : John, .. 0.15 ™ 0.05 |

into SQL Query o
LMs Verifier

-- Example
-- NL: What ...
SELECT ...
+ _ .. | | —

SELECT COUNT(*) FROM students !
Generate where age < 30 AND age > 20 50'13 ! Execute
Err: No

-- Example Tyt
--NL: How many —_— L S
SENEETES i e o | SELECT student_num FROM students! | i
class are between 20 . T p , 110,11
where age_interval = “20-30 ! ! column..
and 30 years old? ] '

| oo |

Final Score

]

Prog
1
Result
1
Ver.
Prob 1

|

........ Executor

SELECT COUNT(name) FROM students E !
where age > 20 AND age < 30 ! ' >_

I
J(

4
o
£
]
x
w

Prog.
2

I

————————

Result [ Result
3 2
wvi v
g l
14 C@
=

<
Ver. Ver.

Prob 3 Prob 2
) )
) 0
vl ul

>
): ']
L)
i) i
I ©®
I w
v

Prog
3

£
5

] |

Task Input

Prog.
k
Result
k

o

o

o

(0]

Ver.
Prob k

[
[

[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”
[2] Li et al. (2022), “Competition-Level Code Generation with AlophaCode.”

30 [3] Ni et al. (2023), “LEVER: Learning to Verify Language-to-Code Generation using Execution.”

Yale



Neuro-Symbolic Approaches (2): Constraint Decoding

 How does code completion work before LLMs?

* Remember: programs are in formal languages, which means that they are
regulated by strict grammar;

* Completion Engine (CE): tells you the valid next tokens w/ static analysis %
* Sounds a lot like a language model, right?
e Butitis a symbolic process

import numpy as np

.« . . def test():
 Combining LM with CE [1]: s e s p.|
* Filter out next token from the LM that (el abs
@] absolute
are not approved by CE (] add

@ add_docstring
* Best of both worlds! & add_newdoc

© add_newdoc_ufunc
@ all
@ allclose

- [1] Poesia et al. (2022), “Synchromesh: Reliable code generation from pre-trained language models.”

Yale



Neuro-Symbolic Approaches (3): Planning and Search

* Programs are compositional by design

 Human programmers typically decompose the problem into smaller parts and
write functions to solve each of them = Planning + Implementation

* Given the components (e.g., individual functions), we can use a solver to find
out if they are sufficient in completing the task = Search

 Example 1: Parsel [1]

Task/Probl / / C\ 9
ask/Problem —
[ Statement ] \ [—G)h \ \/\J
Decompose I
Problem I
OO
~ o0
[((:o or | ;|
g © or
T | ;
| : | -
Parsel ‘ Parsel I :
Program Synthesizer .
\ “am s - - / \ —————— - _J

. [1] Zelikman et al. (2022), “Parsel : Algorithmic Reasoning with Language Models by Composing Decomposition.” Yale



Neuro-Symbolic Approaches (3): Planning and Search

* Programs are compositional by design
 Human programmers typically decompose the problem into smaller parts and

write functions to solve each of them = Planning + Implementation

* Given the components (e.g., individual functions), we can use a solver to find

out if they are sufficient in completing the task = Search

 Example 2: SatLM [1]

ProgramLM
LLM (Parse + Plan)

total_pokemon = 339 @

alex_pokemon = 5

stan_pokemon = 4
adelwolfe_pokemon = 13
stan_pokemon = (total_pokemon -
alex_pokemon - adelwolfe_pokemon *
stan_pokemon) / (1 - stan_pokemon)
result = stan_pokemon

* Program

Interpreter (Execute)

P result = -94 x

33

SatlLM
LLM (Parse)

total_pokemon = 339 @

stan_pokemon = Variable()

alex_pokemon = stan_pokemon + 5

stan_pokemon = adelwolfe_pokemon * 4 - 13
total_pokemon = alex_pokemon + stan_pokemon +
adelwolfe_pokemon

result = stan_pokemon

solve(result)

* FOL Formulas

Solver (Plan + Execute)

2R result = 147 «

[1] Xi et al. (2023), “SATLM: Satisfiability-Aided Language Models Using Declarative Prompting.”

Yale



Prompting Methods using Code for LLMs

* Chain-of-thought (CoT) prompting [1]

* Explicitly write the reasoning process as natural
language
Program-of-thought (PoT) prompting [2] and
Program-aided LM (PAL) [3]
* Explicitly write the reasoning process as a program
* Use program execution to obtain the final answer

* Works well with math and other symbolic

reasoning tasks

* Also closely related to tool-use of LLMs

34

[1] Wei et al. (2022), “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.”

[2] Chen et al. (2022), “Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks.”

[3] Gao et al. (2022), “PAL: Program-aided Language Models.”

Program-aided Language models (this work)

—( Input )
Q: Roger has 5 tennis balls. He buys 2 more cans of \

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.
tennis_balls =5

2 cans of 3 tennis balls each is

bought balls = 2 * 3

tennis balls. The answer is

answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery

store returned 6 unsold loaves. How many loaves of bread

Qid they have left? /

//— Model Output
A: The bakers started with 200 loaves
loaves baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves_sold morning = 93
loaves_sold afternoon = 39
The grocery store returned 6 loaves.
loaves_returned = 6
The answer is

—

answer = loaves_baked - loaves_sold morning
- loaves_sold afternoon + loaves_returned

A

oo

Yale



Retrieval Augmented Generation for Code

* Retrieval-augmented generation (RAG)
* Retrieves relevant pieces of information from some knowledge base and
include them in the prompt
* When programmers code, we look at:
Current file (e.g., defined variables, function, classes)
* Documentation of external libraries «—— “DocPrompting” [1]
Definitions of imported functions and classes «—— “Repo-level Prompt Generator” [2]
Github, StackOverflow, geeksforgeeks... «—— “REDCODER” [3]

* We should give such information to the LLMs as well!

[1] Zhou et al. (2022), “DocPrompting: Generating Code by Retrieving the Docs.”
[2] Shrivastava et al. (2023), “Repository-Level Prompt Generation for Large Language Models of Code.”

. [3] Parvez et al. (2021), “Retrieval Augmented Code Generation and Summarization.” Yale



Summary

* A brief history of code and math LLMs
* Data collection, filtering and tokenization
* Training of code LLMs

* Decoder-only models and code infilling
* Encoder-only models;

* Encoder-decoder models;

e Reinforcement Learning

* Post-training methods for code LLMs
* Neuro-symbolic approaches
* Prompting methods for code
e Retrieval-augmented generation for code

Yale



More Topics I hoped to cover...

* Interdisciplinary applications
* Code as Policies: Language Model Programs for Embodied Control (2023)
e Large Language Models for Compiler Optimization (2023)

* Self-Improvement with code LLMs

e STaR: Bootstrapping Reasoning With Reasoning (2022)
e CodeT: Code Generation with Generated Tests (2022)
e Teaching Large Language Models to Self-Debug (2023)

* DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines (2023)

* More ways to learn a code LLM

* Show Your Work: Scratchpads for Intermediate Computation with Language Models (2021)
* Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions (2022)

37

Yale



38

Hope you enjoyed the lecture!

Questions?

Yale



